
1



Uptane: Securing delivery of software updates for
ground vehicles
The first in a series of Uptane Whitepapers

Compromise–Not If, But When
In 1953, author Isaac Asimov wrote a short story called Sally [1]. Set in 2057, it
was built on the premise that cars by that time would not only be self-driving,
but also sentient. And, typical of mid 20th century science fiction, the story
hinted that helpful and appealing technology carried with it a certain amount of
risk.

In the 68 years since Asimov published this story, cars may not have become
sentient, but they do now contain significantly more electronic components. The
increasing number of smart programmable units on today’s cars, called electronic
control units, or ECUs, are based on large and complex code bases. The ECUs
in current cars typically contain 100 million lines of code [2], significantly more
than any other modern operating system. This code is very likely to contain
multiple programming errors that may not be discovered for years. Coupled
with the fact that today’s cars support a multitude of wireless communication
interfaces, the threat of a remote exploit has become more feasible. Furthermore,
the distributed manner in which software is developed in the automotive industry,
which involves numerous suppliers in complex supply chains, offers numerous
opportunities for hackers to insert malware or to plan other types of attacks.

The consequences of such exploits have already been demonstrated in both
simulated white hat hacks [3] and through accidental mishaps. [4] Now, the
increasing involvement of nation-state actors and large criminal enterprises in
attacking vehicles, bringing with them vast resources unavailable to the hackers
of yesteryear, could mean malicious exploits will become more common, and
potentially more dangerous. The 2020 Global Automotive Cybersecurity Report
[5], released by UpStream Security in December 2020, shows cyber attacks on
the automotive ecosystem increased 99% from 2018 to 2019, and by 700% since
2016. The results of a compromised ECU could include such worst-case scenarios
as tampering with the brakes of an entire fleet of police cars, ransomware attacks
on a vehicle fleet, increased vehicle theft, and other serious consequences.

It is now time to acknowledge that the science fiction nightmares of the 20th
century have become the real-world challenges of the 21st. The development
and implementation of reliable, adaptable, and resilient defenses for passenger
vehicles and light trucks has never been more important.

This whitepaper describes Uptane, the first software update security system for
the automotive industry that was intentionally developed to resist even attacks
by nation-state level actors. Uptane uses layered defense mechanisms so the
security of automotive software updates does not degrade all at once, but is
supported by a hierarchy in which different levels of access to vehicle’s or the

2

https://en.wikipedia.org/wiki/Sally_(short_story)
https://codeinstitute.net/blog/much-code-cars/
https://www.wired.com/2016/09/tesla-responds-chinese-hack-major-security-upgrade/
https://www.theverge.com/2018/2/14/17013016/fiat-chrysler-ota-update-problem-jeep
https://upstream.auto/upstream-security-global-automotive-cybersecurity-report-2020/


automaker’s infrastructure must be gained. By building these multiple levels
into the security system, even if attackers compromise servers, bribe operators,
or gain access to vehicular networks, these incursions will be limited in how
much damage they can cause.

Addressing the double-sided nature of software updates and
why automobiles are so hard to secure
Though not directed against automobiles, the recent SolarWinds hack in which
companies, government agencies, and academic institutions suffered significant
data breaches after malware was slipped into a system management software
update, is a sobering reminder that although it is necessary to update software,
such updates are also always fraught with risk. The full impact [6] of the
SolarWinds attack, which is known to have affected computer systems within the
U.S. Departments of Defense, State, Homeland Security, Treasury, Commerce,
and Energy, is still unknown.

Yet, ignoring software updates is not a viable option either. As Uptane steering
committee member Dr. Justin Cappos, an associate professor of computer science
and engineering at NYU Tandon School of Engineering, explained in a December
20, 2020 article in Yahoo Finance [7], nation-state actors are gravitating to
such attack targets because updating software is something system maintainers
are “supposed to be doing.” In a sense, OEMs and suppliers find themselves
between the proverbial rock and a hard place. But, even though software updates
are risky, Dr. Cappos cautioned, ”If you don’t apply software updates, you’re
absolutely, definitely vulnerable because old software is vulnerable software.”

For automotive OEMs, securing software updates is much more complicated than
for a conventional server-based enterprise system. The ECUs are constrained by
limited execution memory, sometimes minimal storage, and the lack of direct
connections to the Internet. In addition, software updates need to be applied
across a distributed system of automotive devices, which are designed and
serviced by different suppliers, and the probability of bricking the vehicle (i.e.,
rendering it inoperable) must be reduced to negligible levels.

What are the threats and why isn’t secure transport & code
signing enough?
Increasingly, software updates for automotive ECUs are done using “software-
over-the-air” (SOTA) strategies [8], in which revised versions of software programs
are sent to vehicles over the Internet. This strategy is growing in popularity
because it is a much quicker and more cost-effective delivery mechanism than
traditional methods, such as distributing flash drives or requiring customers to
bring in their vehicles for servicing. Furthermore, SOTA promises much higher
penetration rates for essential updates. Established OEMs are recognizing the
potential of this strategy. In May 2019, GM announced that the 2020 Cadillac
CT5 sedan would feature an over-the-air software update mechanism, and that

3

https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach
https://engineering.nyu.edu/faculty/justin-cappos
https://au.finance.yahoo.com/news/why-russias-massive-cyberattack-is-especially-insidious-222912267.html?__s=p54njaazgqic1gqfruk3
https://ihsmarkit.com/research-analysis/remote-software-update-future-growth-business.html
https://ihsmarkit.com/research-analysis/remote-software-update-future-growth-business.html
https://www.theverge.com/2019/5/21/18633000/gm-ota-software-updates-digital-platform-reuss


such systems will be standard on all GM vehicles in the next four years [9].
In the same year, Ford’s website announced that, beginning in 2020, it would
begin equipping most redesigned vehicles in the U.S. with advanced over-the-air
software update mechanisms, starting with the all-electric Mustang Mach-E
[10]. Moreover, in 2021, Toyota and Nissan also begin rolling out OTA software
update features, Toyota in the new Teammate driver assistance system for the
Lexus LS, which will allow for hands-off driving on the highway, and Nissan in
additions and adjustments to driving modes that improve the responsiveness of
the steering wheel or reduce power consumption in the 2021 Ariya [11].

Unfortunately, connecting ECUs directly to the Internet exposes them to a
wide range of attacks, some of which, like SolarWinds, introduce malware
masquerading as legitimate software updates. The consequences of such attacks
could be costly indeed, not only in terms of recalls or lost sales, but also,
potentially, in loss of life.

The classes of attacks that an automotive software security system needs to
defend against fall into four categories, presented here in order of increasing
severity.

Read updates: The goal here is intellectual property theft, so these attackers
aim to read the contents of software updates. This is generally achieved using an
eavesdropping attack, where attackers read unencrypted software updates sent
to the vehicles from a repository–or a server containing relevant metadata about
software images, and sometimes the software images themselves–maintained by
the OEM or a supplier.

Deny updates: In this class of attacks, the goal is to deny access to software
updates so vehicles cannot fix software defects, including newly discovered
vulnerabilities. These attacks include:

• Drop-request attack: blocks network traffic outside or inside the vehicle to
prevent an ECU from receiving any software updates.

• Slow retrieval attack: slows delivery time of software updates to ECUs so
that a known security vulnerability can be exploited before a corrective
patch is received.

• Freeze attack: continues to send the last known software update to an
ECU, even if a newer update exists.

• Partial bundle installation attack: allows only part of a software update to
install by dropping traffic to selected ECUs.

Deny functionality: This class of attacks ups the threat ante a bit further by
causing vehicles to fail to function in one of the following ways:

• Rollback attack: tricks an ECU into installing outdated software with
known vulnerabilities.

• Endless data attack: causes an ECU to crash by sending it an infinite
amount of data until it runs out of storage.

4

https://media.ford.com/content/fordmedia/fna/us/en/news/2020/05/12/new-ford-over-the-air-updates-mustang-mach-e.html
https://asia.nikkei.com/Business/Automobiles/Toyota-and-Nissan-to-upgrade-driving-functions-remotely


• Mixed-bundles attack: shuts down an ECU by causing it to install incom-
patible versions of software updates that must not be installed at the same
time. Attackers can accomplish this by showing different software bundles
to different ECUs at the same time.

• Mix-and-match attack: Like the mixed-bundles attack described above,
this attack also causes ECUsto use arbitrary combinations of new versions
of software updates. However, it is a more serious threat, as it proves that
the attackers have abused repository keys to sign this software bundle.
Thus, all the software updates provided can be completely arbitrary.

Control: The last and most severe method of attack is to force an ECU to
install software of the attacker’s choosing, thus entirely ceding control of that
ECU. This means an attacker can arbitrarily modify the behavior of a vehicle by
overwriting the existing software on an ECU with a malicious software program.

The most common defense against these attacks is to utilize a secure transport
communication protocol (e.g., HyperText Transport Protocol Security - [HTTPS])
and basic code signing (i.e., using a single key to sign the code). However, a
secure over-the-air software update system must do more. A single cryptographic
signature does provide some protection against an arbitrary software attack, but
is not enough on its own to defend against the full range of attacks described
above. In addition, the single signing key itself is a single point of failure for the
system. If an attacker gets control of this common signing key, then they have
full control of all updatable ECUs.

Reliable over-the-air software updates require a solution that addresses all of
the above attacks and is also compromise resilient. In a compromise resilient
system, the security of the entire system does not disintegrate if a hacker obtains
control of a repository or a signing key. In addition, compromise resilient systems
like Uptane have built-in mechanisms to make a quicker recovery from such an
attack.

What does Uptane do differently?
Uptane never conflicts with best practices, but rather expands and/or improves
on best practices for highly resilient software. Uptane is designed to work with
existing software management systems rather than to replace them, and does so
by adding a more realistic approach to existing software update strategies. As
stated above, Uptane acknowledges that compromise is not a matter of if, but
of when. Attacks will occur and the best defense is a strategy that can isolate
damage and limit exposure. The building blocks for this approach rest on four
design principles.

• Separation of trust: distribute responsibility for the signing of metadata
so if one signing key is compromised, then it will not affect other parts of
the system.

• Threshold signatures: require that at least a minimum number of signatures
must be gathered to attest to the authenticity of a file before the software

5



update can be downloaded.
• Explicit and implicit revocation of keys: provide a mechanism for replacing

compromised keys so that malevolent parties cannot continue signing
metadata to authenticate malware, and ensure that keys have reasonable
validity periods (i.e., the same keys are not used forever).

• Keeping the most vulnerable keys offline: mandate that certain signing keys
must always be unavailable to online services, thus making those signing
keys harder to steal or compromise.

These principles are extracted from an established standard called The Update
Framework (TUF) [12], a flexible framework and specification that has proven
successful for securing software update systems and software repositories. Yet,
researchers realized that some changes would be needed to adapt these principles
for automotive ECUs.

The first change is to add a second repository to divide labor and responsibility
for different aspects of the software update verification process. The Image
repository holds an accurate inventory of all the software images currently on all
ECUs on all vehicles maintained by an OEM, and the corresponding metadata.
This Image repository uses offline keys to sign its own metadata, making it much
harder for attackers to substitute compromised software images. The Director
repository, which instructs vehicles what software updates should be installed
next, uses online keys to sign its own metadata, allowing for easier and faster
software update campaigns. By combining these two repositories, an OEM can
provide both customization and strong security for the ECUs on their vehicles.

The second change made to the basic TUF design has to do with the way
Uptane verifies software updates. In the verification step, the ECU determines
if a file is safe to download by checking its accompanying metadata. A given
ECU can be designed to use one of two different verification strategies–full or
partial–depending on its processing power and other resources. Full verification
requires checking that the hashes and sizes of software updates in the signed
metadata match the hashes and sizes stored on the Image repository. Partial
verification only requires a check of the signature on a subset of metadata received
from the Director repository.

Basic Uptane Design
The diagram above illustrates how the checks and balances of the Uptane system
works. The connected components on the right hand side of the diagram are on
the vehicle, while the components on the left hand side represent the repositories.
The Image repository can be thought of as an authoritative source of information
about software images, and the keeper of every image currently deployed by the
OEM or supplier, along with the metadata files that prove their authenticity.
The Director repository determines what software updates should be distributed
to each ECU.

In the first step in the software update process, the vehicle sends its vehicle

6

https://theupdateframework.io/
https://theupdateframework.io/


Figure 1: Uptane Process

version manifest for all installed ECUs to the Director repository. This vehicle
version manifest contains signed information about existing, installed software
images. Using this input, the Director chooses which software images should
be installed next. The metadata and software images are distributed to the
vehicle, which then runs a verification process. The diagram above shows a
Primary ECU that is connected to a number of Secondary ECUs. The Primary
ECU downloads software images and metadata from the Director and Image
repositories, and then shares them with one or more Secondary ECUs on the
same vehicle. ECUs are classified in terms of their access to storage space,
memory, a power supply, and (optionally) a direct Internet connection. The
chosen form of verification–full or partial–is based on the available resources
of the ECU, as well as the criticality of the software update (for safety and/or
security). If the verification process finds no issues, then the software image can
be flashed to the ECU, and the vehicle version manifest is updated.

Full verification provides better protection for those ECUs that have the memory
and storage resources to conduct the more complex procedure. Yet, even the
least capable ECUs can achieve basic protection by the less resource-intensive
partial verification method. Thus, the security of the system as a whole is
improved.

How Uptane continues to evolve to meet a changing mar-
ketplace
Uptane is very much a living and evolving technology. Over the past five
years,the Uptane community has standardized this technology. A multinational

7



team of academic, government, and automotive industry collaborators have also
identified key principles to guide the continuing development of the Uptane
specification. Here are the key principles the Uptane community has embraced
that will enable the technology to evolve in the years ahead.

Agility: Agility in this sense refers to staying ahead of the curve on emerging
trends in the automotive software industry and being able to respond accordingly.
The Uptane project benefits here from the wide variety of subject matter experts
that continue to contribute to both the Standard [13] governing the technology
and the Deployment Best Practices, which compile real-world variations from
OEMs and first-tier suppliers [14]. Also, since Uptane is an open source project,
anyone can review the Standard or the Deployment Best Practices and propose
changes. Thus, the Uptane technology benefits from ongoing feedback derived
from real-world implementations.

Ease of adoption: As mentioned earlier, Uptane never conflicts with deploy-
ment best practices and one component of that commitment is that adopters
should not need to reconfigure their software update systems just to integrate
the Uptane framework. For this reason, the Uptane community made a decision
early on not to specify data binding formats or other protocols, operations, usage,
and formats. Instead, the Uptane Standards team developed a new approach
for specifying Uptane that separates interoperability aspects, such as backwards
compatibility, localization, and deployment, from those aspects essential to relia-
bility, security, and functionality. The latter group of aspects, which constitute
the actual Uptane Standard, make up the baseline layer for instructions, while all
the elements required for interoperability are specified in a second layer, known
as an Uptane Protocols, Operations, Usage, and Formats (POUF) document.
By giving implementers the option to create a POUF [15], Uptane technology
can be adapted to the constraints of existing implementations, without requiring
extensive modifications. The POUF concept also makes it easier to add suppliers
to the software update ecosystem as needed, without having to share supplier
proprietary designs.

Awareness of evolving regulations and standards: As government and
industry begin to address the need for improved automotive security, the Uptane
project is seeking to stay in alignment with emerging regulations and interna-
tional standards governing over-the-air software updates and other aspects of
cybersecurity important to the automotive space. This is achieved by leveraging
insights from industry experts through ongoing revisions to the Uptane Standard,
and by continuing to encourage all stakeholders in the automotive industry to
provide feedback through an open-source Uptane forum.

Starting conversations about the challenges ahead
As new vehicles edge ever closer to the designs envisioned in novels and movies
in the mid-20th century, there will be new cybersecurity questions to address.
Currently, the Uptane project is opening conversation on three such issues. The

8

https://uptane.github.io/papers/uptane-standard.1.1.0.html
https://uptane.github.io/papers/uptane-deployment-best-practices-1.1.0.html
https://ssl.engineering.nyu.edu/papers/moore_pouf_2020.pdf


industry’s response to these issues is still evolving so the Uptane project may not
need to provide solutions in the immediate future. However, through Uptane
whitepapers, we can frame the key questions that need to be resolved as our
work moves forward. Look for new whitepapers in the coming months and years
to address the following issues.

Allowing access to ECUs for emergency updates from federal/state/local govern-
ments

As SOTA delivery of automotive software updates becomes more sophisticated,
government agencies and regulatory bodies, such as the U.S. Department of
Transportation or its state or local equivalents, the Department of Homeland
Security, or the Federal Emergency Management Agency, may require automakers
to grant them access to vehicles in emergency situations. Such updates might
cover things like changed rules of the road (across a state or country border),
emergency routing (e.g., from US FEMA or US DOT), normal traffic updates
(which would come from US DOT or their counterparts in other nations), and
reliable maps (not from Google, et al). Though there have been no specific calls
for such access as of yet, there has been discussion of these types of scenarios
in other standards groups. Furthermore, all of these updates happen today
on cellphones, and on infotainment units of vehicles with cellular connectivity.
Accommodating this government access to vehicles will require some further
discussion about how an Uptane implementation is configured, particularly about
how to prioritize delegations, and perhaps also support a dual Director repository
set-up.

Security issues related to the use of aftermarket materials

Aftermarket automotive supply companies create new parts for additional au-
tomotive functionality, and also refurbish and reuse parts following end-of-life
support from OEMs. Thus, aftermarket suppliers are introducing ECUs to
vehicles over which the OEM has no control. In addition, because aftermarket
suppliers typically do not have access to original OEM designs, they often must
reverse engineer the parts to figure out how they work. Such an approach perhaps
keeps these aftermarket suppliers from being able to discover all relevant design
information about the ECUs.

Reflecting the many issues this topic encompasses, a future whitepaper will try
to effectively frame a number of questions, and describe whatever answers may
be currently available. These questions will include:

• How can we deal with aftermarket ECUs that do not have their own
Primary ECU?

• Can these aftermarket ECUs leverage an OEM’s Director and Image
repositories?

• If an aftermarket ECU does have its own Primary ECU, then is it capable
of controlling a mutually exclusive set of ECUs?

• Could ownership of the Director be delegated to a third party or owner?

9



Alignment with government and industry regulations

The Uptane project continues to monitor evolving regulations and standards.
While our primary concern is ensuring these requirements and recommendations
are reflected in our Uptane Standard and Deployment Best Practices, a future
whitepaper will address how the design and implementation of Uptane “dove-tails”
with relevant standards, such as:

• Autosar Update Configuration Module (UCM)
• UNECE WP29 R155 & R156 cybersecurity and software update regulations
• ISO/SAE 21434 Road Vehicles: Cybersecurity Engineering
• ISO 24089 Road Vehicles: Software Updates
• SAE J3101 Hardware Protected Security Environment
• TCG (Trusted Computing Group) hardware security and remote attestation

specs
• IETF SUIT (Software Updates for IoT Devices) specs

Learn More
The best place to learn more about Uptane is to go to our website [16]. Here you
can read more about the specification, review the current version of the Uptane
Standard for Design and Implementation and the Deployment Best Practices
documents, as well as previous and future conference presentations, testing
information, and other data. We welcome questions, feedback, and suggestions
on these materials, the website, or any other aspect of the Uptane project. Feel
free to raise issues on GitHub or email feedback to jcappos@nyu.edu.

Anyone in the automotive industry, open source community, or security commu-
nity is welcome to join the Uptane Forum. This is a fairly low volume mailing
list and is used to disseminate large news items, or to plan in-person Uptane
workshops. The Uptane standardization initiative is discussed on the Uptane
Standard mailing list, to coordinate the Uptane standardization effort. To be
added to either of these mailing lists, send an email to lad278@nyu.edu.

References cited
1. “Sally (Short story),”Wikipedia. https://en.wikipedia.org/wiki/Sally_(short_story).

22 February 2021. Accessed 14 June 2021.
2. “HowMuch Code? Cars,” The Code Institute. https://codeinstitute.net/blog/much-

code-cars. Accessed 14 June 2021.
3. Greenberg, Andy. “Tesla Responds to Chinese Hack With a Major Secu-

rity Upgrade,” Wired. https://www.wired.com/2016/09/tesla-responds-
chinese-hack-major-security-upgrade/. 27 September 2016. Accessed 14
June 2021.

4. O’Kane, Sean. “Chrysler’s over-the-air update fiasco is limited to
the Northeast, but customers are still waiting for a fix,” The Verge.

10

https://uptane.github.io/
https://uptane.github.io/papers/uptane-standard.1.1.0.html
https://uptane.github.io/papers/uptane-standard.1.1.0.html
https://uptane.github.io/papers/uptane-deployment-best-practices-1.1.0.html


https://www.theverge.com/2018/2/14/17013016/fiat-chrysler-ota-
update-problem-jeep. 14 February 2018. Accessed 14 June 2021.

5. Upstream Security. 2020 Global Automotive Cybersecurity Re-
port. https://upstream.auto/upstream-security-global-automotive-
cybersecurity-report-2020/. Accessed 14 June 2021.

6. “2020 United States federal government data breach,” Wikipedia.
https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach.
12 June 2021. Accessed 14 June 2021.

7. Howley, Daniel. “Why Russia’s massive cyberattack is especially insidious,”
Yahoo Finance. https://au.finance.yahoo.com/news/why-russias-massive-
cyberattack-is-especially-insidious-222912267.html?__s=p54njaazgqic1gqfruk3.
19 December 2020. Accessed 14 June 2021.

8. Juliussen, Egil. “Remote software update: Future growth business,” IHS
Markit. https://ihsmarkit.com/research-analysis/remote-software-update-
future-growth-business.html. 13 January 2015. Accessed 14 June 2021.

9. Hawkins, Andrew J. “GM’s new ‘digital nerve system’ will en-
able over-the-air software updates on all vehicles,” The Verge.
https://www.theverge.com/2019/5/21/18633000/gm-ota-software-
updates-digital-platform-reuss. 21 May 2019. Accessed 14 June
2021.

10. “No more FOMO: New Ford over-the-air updates help Mustang Mach-E
get even better with time–Without leaving home,” Ford Media Center.
https://media.ford.com/content/fordmedia/fna/us/en/news/2020/05/12/new-
ford-over-the-air-updates-mustang-mach-e.html. 12 May 2020. Accessed
14 June 2021.

11. Oshikiri, Tomoyoshi. “Toyota and Nissan to upgrade driving functions re-
motely,” Nikkei Asia. https://asia.nikkei.com/Business/Automobiles/Toyota-
and-Nissan-to-upgrade-driving-functions-remotely. 9 February 2021.
Accessed 14 June 2021.

12. The Update Framework Website. https://theupdateframework.io/. Ac-
cessed 14 June 2021.

13. Uptane Standard for Design and Implementation. https://uptane.github.io/papers/uptane-
standard.1.1.0.html. 8 January 2021. Accessed 14 June 2021.

14. Uptane Deployment Best Practices. https://uptane.github.io/papers/uptane-
deployment-best-practices-1.1.0.html. 8 January 2021. Accessed 14 June
2021.

15. Moore, Marina, McDonald, Ira, Weimerskirch, André, Awwad, Sebastien,
DeLong, Lois Anne, and Cappos, Justin. “Using a Dual-Layer Specifica-
tion to Offer Selective Interoperability for Uptane.” ESCAR USA 2020
Special Issue, SAE Int. J. Transp. Cyber. & Privacy 2(2):113-129, 2019.
https://ssl.engineering.nyu.edu/papers/moore_pouf_2020.pdf.

16. Uptane Website. https://uptane.github.io/. Accessed 14 June 2021.

11


	Uptane: Securing delivery of software updates for ground vehicles
	The first in a series of Uptane Whitepapers
	Compromise–Not If, But When
	Addressing the double-sided nature of software updates and why automobiles are so hard to secure
	What are the threats and why isn’t secure transport & code signing enough?
	What does Uptane do differently?
	Basic Uptane Design
	How Uptane continues to evolve to meet a changing marketplace
	Starting conversations about the challenges ahead
	Learn More
	References cited


