
Abstract

Uptane Standard for Design and Implementation v1.2.0
uptane-standard-design

Abstract
This document describes a framework for securing ground vehicle software up-
date systems.

Table of Contents
1. Introduction

2. Terminology

• 2.1. Conformance terminology

• 2.2. Terminology

• 2.3. Uptane role terminology

• 2.4. Acronyms and abbreviations

3. Rationale for and scope of the Uptane Standard

3.1. Why Uptane requires a standards document

3.2. Scope of Standard coverage

• 3.2.1. Assumptions

• 3.2.2. Use cases

3.3. Exceptions

3.4. Out of scope

3.5. Design requirements

4. Threat model and attack strategies

4.1. Attacker goals

1

4.2. Attacker capabilities

4.3. Description of threats

• 4.3.1. Read updates

• 4.3.2. Deny installation of updates

• 4.3.3. Interfere with ECU functionality

• 4.3.4. Control an ECU or vehicle

5. Detailed design of Uptane

5.1. Roles on repositories

• 5.1.1. The Root role

• 5.1.2. The Targets role

• 5.1.3. The Snapshot role

• 5.1.4. The Timestamp role

5.2. Metadata structures

• 5.2.1. Common metadata structures

• 5.2.2. Root metadata

• 5.2.3. Targets metadata

• 5.2.4. Snapshot metadata

• 5.2.5. Timestamp metadata

• 5.2.6. Repository mapping metadata

• 5.2.7. Rules for filenames in repositories and metadata

5.3. Server / repository implementation requirements

• 5.3.1. Image repository

• 5.3.2. Director repository

5.4. In-vehicle implementation requirements

• 5.4.1. Build-time prerequisite requirements for ECUs

• 5.4.2. What the Primary does

• 5.4.3. Installing images on Primary or Secondary ECUs

• 5.4.4. Metadata verification procedures

6. References

• 6.1. Normative References

• 6.2. Informative References

2

Author’s Address

1. Introduction
Uptane is a secure software update framework for ground vehicles. This docu-
ment describes procedures to enable programmers for OEMs and suppliers to
securely design and implement this framework in a manner that better pro-
tects connected units on ground vehicles. Integrating Uptane as outlined in the
sections that follow can reduce the ability of attackers to compromise critical
systems. It also assures a faster and easier recovery process should a compromise
occur.

These instructions specify the components necessary for a compliant implemen-
tation. Individual implementers can make their own technological choices within
those requirements. This flexibility makes Uptane adaptable to the many cus-
tomized update solutions used by manufacturers. If implementers wish to have
compatible formats, they may use POUFs. POUFs contain a description of
implementation choices as well as data binding formats. An implementer who
adopts a POUF, as well as the Uptane Standard, will be able to interoperate
with other implementations using that POUF.

2. Terminology
2.1. Conformance terminology
The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT,
SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this
document are to be interpreted as described in [RFC2119].

In order to be considered Uptane-compliant, an implementation MUST follow
all of these rules as specified in the document.

2.2. Terminology
For definitions of terms used in this Standard, please refer to the glossary in the
Deployment Best Practices.

2.3. Uptane role terminology
These terms are defined in greater detail in Section 5.1.

Delegation: A process by which the responsibility of signing metadata about
images is assigned to another party. Role: A party (human or machine) re-
sponsible for signing a certain type of metadata. The role controls keys and
is responsible for signing metadata entrusted to it with these keys. The roles
mechanism of Uptane allows the system to distribute signing responsibilities so
that the compromise of one key does not necessarily impact the security of the
entire system.

3

https://uptane.github.io/deployment-considerations/glossary.html

• Root role: Signs metadata that distributes and revokes public keys used
to verify the Root, Timestamp, Snapshot, and Targets role metadata.

• Snapshot role: Signs metadata that indicates which images the repository
has released at the same time.

• Targets role: Signs metadata used to verify the image, such as crypto-
graphic hashes and file size.

• Timestamp role: Signs metadata that indicates if there are any new meta-
data or images on the repository.

2.4. Acronyms and abbreviations
CDN : Content Delivery Network

ECUs: Electronic Control Units, the computing units on a vehicle

LIN Bus: Local Interconnect Bus

OBD: On-board diagnostics

SOTA: Software Updates Over-the-Air

UDS: Unified Diagnostic Services

VIN : Vehicle Identification Number

3. Rationale for and scope of the Uptane Standard
This Standard document provides the essential components for the secure design,
implementation, and deployment of Uptane by OEMs and suppliers. These
guidelines contribute to compromise resilience, or the ability to minimize the
extent of the threat posed by any given attack.

However, this specification is intended as an implementation guide, and not as a
detailed technical argument about the security properties that Uptane provides.
Readers interested in such documentation should refer to published papers that
cover this topic. [UPTANEESCAR]

3.1. Why Uptane requires a standards document
A standards document that can guide the safe design, integration, and deploy-
ment of Uptane in vehicles is needed at this time because:

• The number of connected units on the average vehicle continues to grow,
with mainstream cars now containing up to 100 million lines of code. [US-
ATODAY]

• The expanded use of software over-the-air strategies creates new attack
surfaces for malicious parties. [CR-OTA]

4

• Legacy update strategies, such as SSL/TLS or GPG/RSA, are not feasible
for use on vehicle ECUs because they force manufacturers to chose between
enhanced security and customizability.

• Conventional strategies are also complicated by the differing resources of
the ECUs, which can vary greatly in memory, storage space, and Internet
connectivity.

• The design of Uptane makes it possible to offer improved design flexibility
without sacrificing security.

• This added design flexibility, however, could be a liability if the framework
is implemented incorrectly.

• Standardization of crucial steps in the design, implementation, and use
of Uptane can assure that customizability does not impact security or
functionality.

3.2. Scope of Standard coverage
This document sets guidelines for implementing Uptane in most systems capable
of updating software on connected units in ground vehicles, including passenger
vehicles, light-duty trucks, heavy-duty trucks, and motorcycles. Uptane could
potentially also be applied to other ground vehicles, such as automated shuttles,
recreational vehicles, and military ground vehicles. Uptane could even be ap-
plied to domains such as IoT devices, medical devices, and autonomous aerial
vehicles. In this section, we define the scope of that applicability by providing
sample use cases and possible exceptions, aspects of software update security
that are not applicable to Uptane, and the design requirements governing the
preparation of these standards.

3.2.1. Assumptions
We assume the following system preconditions for Uptane:

• Vehicles have the ability to establish connectivity to required backend
services. For example, this could be done through cellular, Wi-Fi, or hard-
wired mechanisms.

• ECUs are either directly connected to the communication channel, or are
indirectly connected via some sort of network gateway.

• ECUs are programmable and provide sufficient performance to be up-
dated.

• ECUs must be able to perform public key cryptography operations and
calculate hashes of images and metadata files.

• There are state-of-the-art secure servers in place, such as the Director and
Image repository servers.

5

It is important that any bugs detected in Uptane implementations be patched
promptly. Failure to do so could interfere with the effectiveness of Uptane’s
operations.

3.2.2. Use cases
The following use cases provide a number of scenarios illustrating the manner
in which software updates could be accomplished using Uptane.

3.2.2.1. OEMs initializing Uptane at the factory using
SOTA
An OEM plans to install Uptane on new vehicles. This entails the following
components: code to perform full and partial verification, the latest copy of the
relevant metadata, the public keys, and an accurate attestation of the latest time.
The OEM then either requires its tier-1 suppliers to provide these materials
to the suppliers’ assembly lines or can choose to add the materials later at
the OEM’s assembly lines. The OEM’s in-vehicle implementation is Uptane-
compliant if:

1. all Primaries perform full verification;

2. all Secondaries that are updated via OTA at least perform partial verifi-
cation; and

3. all other ECUs that do not perform any type of verification cannot be
updated via OTA.

3.2.2.2. Updating one ECU with a complete image
A tier-1 supplier completes work on a revised image for an electronic brake
control module. This module will control the brakes on all models of an SUV
produced by the OEM mentioned above. Assuming supplier delegation is sup-
ported by the OEM for this ECU, each tier-1 supplier digitally signs the image,
then delivers the signature, all of its metadata, including delegations, and asso-
ciated images to the OEM. The OEM adds these metadata and images to its
Image repository, along with information about any dependencies and conflicts
between this image and those for other ECUs used in the OEM’s vehicles. The
OEM also updates the inventory database, so that the Director repository can
instruct the ECU on how to install these updated images.

3.2.2.3. Updating individual ECUs on demand
An OEM has issued a recall to address a problem with a keyless entry device
that has been locking people out of their cars. The OEM prepares an updated
flash image in the manner described above. The OEM then ships USB flash
drives to vehicle owners and dealerships that allow those parties to update the
firmware of their vehicles.

6

3.2.2.4. Update one ECU with multiple deltas
The OEM wants to use delta updates to save over-the-air bytes. The delta
images contain only the code and/or data that has changed from the previous
image version. To do so, the OEM must first modify the Director repository,
using the vehicle version manifest and dependency resolution to determine the
differences between the previous and latest images. The OEM then adds the
following to the custom Targets metadata used by the Director repository: (1)
the algorithm used to apply a delta image, and (2) the Targets metadata about
the delta image. The OEM will also check whether the delta images match the
Targets metadata from the Director repository.

3.3. Exceptions
There are a number of factors that could impede the completion of the above
scenarios:

• ECUs may be lacking the necessary resources to function as designated.
These insufficient resources could include limited CPU or RAM inadequate
for performance of public key cryptography; a lack of sufficient storage to
undo installation of bad software; or a location on a low-speed network
(e.g., LIN).

• ECUs may reside on different network segments, and may not be able to
directly reach each other, requiring a gateway to facilitate communication.

• A user may replace OEM-installed ECUs with aftermarket ECUs.

• A vehicle may be able to download only a limited amount of data via a
cellular channel due to limits on a data plan.

• A system may lack sufficient power to download or install software up-
dates.

• Vehicles may be offline for extended periods of time, thus missing required
updates (e.g., key rotations).

• OEMs may be unwilling to implement costly security or hardware require-
ments.

3.4. Out of scope
The following topics will not be addressed in this document, as they represent
threats outside the scope of Uptane:

• Physical attacks, such as manual tampering with ECUs outside the vehicle.

• Compromise of the packaged software, such as malware embedded in a
trusted package.

7

• Compromise of the supply chain (e.g., build system, version control system,
packaging process). A number of strategies (e.g., git signing, TPMs, in-
toto [IN-TOTO]) already exist to address this problem. Therefore, there
is no need to duplicate those techniques here.

• Problems associated with OBD or UDS programming of ECUs, such as
authentication of communications between ECUs.

• Malicious mirrors of package repositories, which may substitute original
packages with malicious packages with matching version numbers [MER-
CURY].

3.5. Design requirements
The design requirements for this document are governed by the following prin-
cipal parameters:

• to clearly mandate the design and implementation steps that are secu-
rity critical and must be followed as is, while offering flexibility in the
implementation of non-critical steps. In this manner, users can adapt to
support different use models and deployment scenarios.

• to ensure that, if Uptane is implemented, the security practices mandated
or suggested in this document do not interfere with the functionality of
ECUs, vehicles, or the systems that maintain them.

• to delineate guidelines to ensure that, should any part of the SOTA mech-
anism of a vehicle be attacked, an attacker must compromise two or more
modules to breach the SOTA mechanism.

4. Threat model and attack strategies
The overarching goal of Uptane is to provide a system that is resilient in the
face of various types of compromise. In this section, we describe the goals an
attacker may have (Section 4.1) and the capabilities they may have or could
develop (Section 4.2). We then describe and classify types of attacks on the
system according to the attacker’s goals (Section 4.3).

4.1. Attacker goals
We assume that attackers may want to achieve one or more of the following
goals, in increasing order of severity:

• Read the contents of updates to discover confidential information, reverse-
engineer firmware, or compare two firmware images to identify security
fixes and hence determine the fixed security vulnerability.

• Deny installation of updates to prevent vehicles from fixing software prob-
lems.

8

• Cause one or more ECUs in the vehicle to fail, denying use of the vehicle
or of certain functions.

• Control ECUs within the vehicle, and possibly the vehicle itself.

4.2. Attacker capabilities
Uptane is designed with resilience to compromise in mind. We assume that
attackers may develop one or more of the following capabilities:

• Intercept and modify network traffic (i.e., perform man-in-the-middle at-
tacks). This capability may be developed in two domains:

– Outside the vehicle, intercepting and modifying traffic between the
vehicle and software repositories.

– Inside the vehicle, intercepting and modifying traffic on one or more
vehicle buses (e.g., via an OBD port or using a compromised ECU
as a vector).

• Compromise and control either a Director repository or Image repository
server, and any keys stored on that repository, but not both the Director
and Image repositories.

• Compromise either a Primary ECU or a Secondary ECU, but not both in
the same vehicle.

4.3. Description of threats
Uptane’s threat model includes the following types of attacks, organized accord-
ing to the attacker goals listed in Section 4.1.

4.3.1. Read updates
• Eavesdrop attack: Read sensitive or confidential information from an up-

date intended to be encrypted for a specific ECU. (Note: Not all imple-
mentations will have a need to protect information in this way.)

4.3.2. Deny installation of updates
An attacker seeking to deny the installation of updates may attempt one or
more of the following strategies:

• Drop-request attack: Block network traffic outside or inside the vehicle.

• Slow retrieval attack: Slow down network traffic, in the extreme case
sending barely enough packets to avoid a timeout. Similar to a drop-
request attack, except that both the sender and receiver of the traffic still
think network traffic is unimpeded.

9

• Freeze attack: Continue to send a properly signed, but old, update bundle
to the ECUs, even if newer updates exist.

• Partial bundle installation attack: Install a valid (signed) update bundle,
and then block selected updates within the bundle.

• Conduct a denial of service attack against the Uptane repositories or in-
frastructure.

4.3.3. Interfere with ECU functionality
Attackers seeking to interfere with the functionality of vehicle ECUs in order
to cause an operational failure or unexpected behavior may do so in one of the
following ways:

• Rollback attack: Cause an ECU to install a previously valid software revi-
sion that is older than the currently installed version.

• Endless data attack: Send a large amount of data to an ECU until it runs
out of storage, possibly causing the ECU to fail to operate.

• Mix-and-match attack: Install a malicious software bundle in which some
of the updates do not interoperate properly. This may be accomplished
even if all of the individual images being installed are valid, as long as
valid versions exist that are mutually incompatible.

4.3.4. Control an ECU or vehicle
Full control of a vehicle, or one or more ECUs within a vehicle, is the most
severe threat.

• Arbitrary software attack: Cause an ECU to install and run arbitrary code
of the attacker’s choice.

5. Detailed design of Uptane
Uptane does not specify implementation details. Instead, this Standard de-
scribes the components necessary for a compliant implementation and leaves it
up to individual implementers to make their own technological choices within
those requirements.

At a high level, Uptane requires:

• Two software repositories:

– An Image repository containing binary images to install and signed
metadata about those images.

– A Director repository connected to an inventory database that can
sign metadata on demand for images in the Image repository.

10

• Repository tools for generating Uptane-specific metadata about images.

• A public key infrastructure supporting the required metadata production
and signing roles on each repository:

– Root - The certificate authority for the Uptane ecosystem. Dis-
tributes public keys for verifying all the other roles’ metadata.

– Timestamp - Indicates whether there are new metadata or images.

– Snapshot - Indicates images released by the repository at a point in
time via signing metadata about Targets metadata.

– Targets - Indicates metadata about images, such as hashes and file
sizes.

• A secure way for ECUs to know the time.

• An ECU capable of downloading images and associated metadata from
the Uptane servers.

• An in-vehicle client on a Primary ECU capable of verifying the signatures
on all update metadata and downloading updates on behalf of its associ-
ated Secondary ECUs. The Primary ECU MAY be the same ECU that
communicates with the server.

• A client or library on each Secondary ECU capable of performing either
full or partial verification of metadata.

5.1. Roles on repositories
A repository contains images and metadata. Each role has a particular type of
metadata associated with it, as described in Section 5.2.

5.1.1. The Root role
A repository’s Root role SHALL be responsible for a Certificate Authority as
defined in [RFC3647]. A repository’s Root role SHALL produce and sign Root
metadata as described in Section 5.2.2. A repository’s Root role SHALL sign the
public keys used to verify the metadata produced by the Timestamp, Snapshot,
and Targets roles. A repository’s Root role SHALL revoke keys for the other
roles if they are compromised.

5.1.2. The Targets role
A repository’s Targets role SHALL produce and sign metadata about images
and delegations as described in Section 5.2.3.

11

5.1.2.1. Delegations
The Targets role on the Image repository MAY delegate the responsibility of
signing metadata to other, custom-defined roles referred to as delegated targets.
If it does, it MUST do so as specified in Section 5.2.3.2.

As responsibility for signing images or a subset of images MAY be delegated to
more than one role, it is possible that two different roles will be trusted to sign
a particular image. For this reason, delegations MUST be prioritized.

A particular delegation for a subset of images MAY be designated as terminat-
ing. For terminating delegations, the client SHALL NOT search any further
if it does not find validly signed metadata about those images. Delegations
SHOULD NOT be terminating by default; terminating delegations SHOULD
only be used when there is a compelling technical reason to do so.

A delegation for a subset of images MAY be a multi-role delegation [TAP-3]. A
multi-role delegation indicates that multiple roles are needed to sign a particular
image and each of the delegatee roles MUST sign the same metadata.

Delegations only apply to the Image repository. The Targets role on the Director
repository MUST NOT delegate metadata signing responsibility.

5.1.3. The Snapshot role
A repository’s Snapshot role SHALL produce and sign metadata about all Tar-
gets metadata the repository releases, including the current version number of
the top-level Targets metadata, and the version numbers of all delegated Targets
metadata, as described in Section 5.2.4.

5.1.4. The Timestamp role
A repository’s Timestamp role SHALL produce and sign metadata indicating
whether there are new metadata or images on the repository. It MUST do so
by signing the metadata about the Snapshot metadata file.

5.2. Metadata structures
Uptane’s security guarantees all rely on properly created metadata that follows a
designated structure. The Uptane Standard does not mandate any particular
format or encoding for the metadata as a whole. ASN.1 (with any encoding
scheme like BER, DER, XER, etc.), JSON, XML, or any other encoding format
that is capable of providing the required structure MAY be used.

However, string comparison is required as part of metadata verification. To
ensure an accurate basis for comparing strings, all strings MUST be encoded in
the Unicode Format for Network Interchange as defined in [RFC5198], including
normalization into Unicode Normalization Form C ([NFC]).

12

In the Deployment Best Practices ([DEPLOY]), Joint Development Foundation
Projects, LLC, Uptane Series provides some examples of compliant metadata
structures in ASN.1 and JSON.

5.2.1. Common metadata structures
Every public key MUST be represented using a public key identifier. A public
key identifier is EITHER all of the following:

• The value of the public key itself (which MAY be, for example, formatted
as a PEM string)

• The public key cryptographic algorithm used by the key (such as RSA or
ECDSA)

• The particular scheme used to verify the signature (such as rsassa-pss-sha256
or ecdsa-sha2-nistp256)

OR a secure hash over at least the above components (such as the keyid mech-
anism in TUF).

All four Uptane roles (Root, Targets, Snapshot, and Timestamp) share a com-
mon structure. They SHALL contain the following two attributes:

• A payload of metadata to be signed

• An attribute containing the signature(s) of the payload, where each entry
specifies:

– The public key identifier of the key being used to sign the payload

– A signature with this key over the payload

The payload differs depending on the role. However, the payload for all roles
shares a common structure. It SHALL contain the following four attributes:

• An indicator of the type of role (Root, Targets, Snapshot, or Timestamp)

• An expiration date and time

• An integer version number, which SHOULD be incremented each time the
metadata file is updated

• The role-specific metadata for the role indicated

The following sections describe the role-specific metadata. All roles SHALL
follow the common structures described here.

5.2.2. Root metadata
A repository’s Root metadata distributes the public keys of the top-level Root,
Targets, Snapshot, and Timestamp roles, as well as revocations of those keys.
It SHALL contain two attributes:

13

• A representation of the public keys for all four roles. Each key SHALL
have a unique public key identifier.

• An attribute mapping each role to (1) its public key(s), and (2) the thresh-
old of signatures required for that role.

5.2.3. Targets metadata
The Targets metadata on a repository contains all of the information about
images to be installed on ECUs. This includes filenames, hashes, and file sizes.
It MAY also include other useful information, such as what types of hardware
are compatible with a particular image.

Targets metadata can also contain metadata about delegations, allowing one
Targets role to delegate its authority to another. This means that an individual
Targets metadata file might contain only metadata about delegations, only meta-
data about images, or some combination of the two. The details of how ECUs
traverse the delegation tree to find valid metadata about images is specified in
Section 5.4.4.7.

5.2.3.1. Metadata about images
To be available to install on clients, all images on the repository MUST have
their metadata listed in a Targets role. Each Targets role MAY provide a list
of some images on the repository. This list MUST provide, at a minimum, the
following information about each image:

• The image filename

• The size of the image in bytes

• One or more hashes of the image file, along with the hashing function used

If there are no images included in the Targets metadata from the Director repos-
itory, then the metadata SHOULD include a vehicle identifier in order to avoid
a replay attack.

5.2.3.1.1. Custom metadata about images
In addition to what is required, Targets metadata files MAY contain extra
metadata for images on the repository. This metadata can be customized for a
particular use case. Examples of use cases for different types of custom meta-
data can be found in the Deployment Best Practices document ([DEPLOY]).
However, there are a few important pieces of custom metadata that SHOULD
be present in most implementations. In addition, there is one element in the
custom metadata that MUST be present in the Targets metadata from the
Director.

Custom metadata MAY also contain a demarcated field or section that MUST
match whenever two pieces of metadata are checked against each other, such as

14

when Targets metadata from the Director repository is checked against Targets
metadata from the Image repository.

The information listed below SHOULD be provided for each image on both the
Image repository and the Director repository. If a “MUST match section” is to
be implemented, that is where this information SHOULD be placed.

• A release counter, to be incremented each time a new version of the image
is released. This can be used to prevent rollback attacks even in cases
where the Director repository is compromised.

• A hardware identifier, or list of hardware identifiers, representing models
of ECUs with which the image is compatible. This can be used to ensure
that an ECU cannot be ordered to install an incompatible image, even in
cases where the Director repository is compromised.

The following information is CONDITIONALLY REQUIRED for each image
on the Director repository IF that image is encrypted:

• Information about filenames, hashes, and file size of the encrypted image.

• Information about the encryption method, and other relevant information–
for example, a symmetric encryption key encrypted by the ECU’s asym-
metric key could be included in the Director repository metadata.

The following information MUST be provided from the Director repository for
each image in the Targets metadata:

• An ECU identifier (such as a serial number), specifying the ECU that
should install the image.

The Director repository MAY provide a download URL for the image file. This
may be useful, for example, when the image is on a public CDN and the Director
wishes to provide a signed URL.

5.2.3.2. Metadata about delegations
A Targets metadata file on the Image repository (but not the Director reposi-
tory) MUST be able to delegate signing authority to other entities. For exam-
ple, it could delegate signing authority for a particular ECU’s firmware to that
ECU’s supplier. A metadata file MAY contain any number of delegations and
MUST keep the delegations in prioritized order.

Any metadata file with delegations MUST provide the following information:

• A list of public keys of all delegatees. Each key should have a unique
public key identifier and a key type.

• A list of delegations, each of which contains:

– A list of the filenames to which this role applies. This MAY be
expressed using wildcards, or by enumerating a list, or a combination

15

of the two.

– An optional list of the hardware identifiers to which this role applies.
If this is omitted, any hardware identifier will match.

– An indicator of whether or not this is a terminating delegation. (See
Section 5.1.2.1.)

– A list of the roles to which this delegation applies. Each role needs
to specify:

∗ A name for the role (e.g., “supplier1-qa”)

∗ The key identifiers for each key this role uses

∗ A threshold of keys that must sign for this role

Note that any Targets metadata file stored on the Image repository may contain
delegations, and these delegations can be in chains of arbitrary length.

5.2.4. Snapshot metadata
The Snapshot metadata lists version numbers and filenames of all Targets meta-
data files. It protects against mix-and-match attacks if a delegated supplier key
is compromised.

For each Targets metadata file on the repository, the Snapshot metadata SHALL
contain the following information:

• The filename and version number of the Targets metadata file.

The Snapshot metadata MAY also list the Root metadata filename and version
number for the purpose of backwards compatibility. Historically, this was a re-
quirement in TUF, but it is no longer required and does not provide a significant
security benefit.

5.2.5. Timestamp metadata
The Timestamp metadata SHALL contain the following information:

• The filename and version number of the latest Snapshot metadata on the
repository.

• One or more hashes of the Snapshot metadata file, along with the hashing
function used.

5.2.6. Repository mapping metadata
As described in the introduction to Section 5, Uptane requires a Director repos-
itory and an Image repository. However, it is possible to have an Uptane-
compliant implementation that has more than two repositories.

16

Repository mapping metadata informs a Primary ECU about which repositories
to trust for images or image paths. [TAP-4] describes how to make use of
more complex repository mapping metadata in order to have more than the two
required repositories.

Repository mapping metadata, or the equivalent informational content, MUST
be present on all Primary ECUs, and MUST contain the following information:

• A list of repository names and one or more URLs at which the named
repository can be accessed. At a minimum, this MUST include the Direc-
tor and Image repositories.

• A list of mappings of image paths to repositories, each of which contains:

– A list of image paths. Image paths MAY be expressed using wild-
cards, or by enumerating a list, or a combination of the two.

– A list of repositories that MUST provide signed Targets metadata
for images stored at those paths.

For example, in the most basic Uptane case, the repository mapping metadata
would contain:

• The name and URL of the Director repository.

• The name and URL of the Image repository.

• A single mapping indicating that all images (*) MUST be signed by both
the Director and Image repository.

Note that the metadata need not be in the form of a metadata file. For example,
in the basic case where there is only one Director and one Image repository, and
all images need to have signed metadata from both repositories, it would be
sufficient to have a configuration file with URLs for the two repositories and a
client that always checks for metadata matches between them. In this case, no
explicit mapping would be defined, because the mapping is defined as part of
the Uptane client implementation.

The Uptane Deployment Best Practices document ([DEPLOY]) provides more
guidance on how to implement repository mapping metadata for more complex
use cases. It also discusses strategies for updating repository mapping metadata,
if required.

5.2.7. Rules for filenames in repositories and metadata
There is a difference between the filename in a metadata file or an ECU, and the
filename on a repository. This difference exists in order to avoid race conditions,
where metadata and images are read from, and written to, at the same time.
For more details, the reader should read the TUF specification [TUF-spec] and
PEP 458 [PEP-458].

17

Unless stated otherwise, all files SHALL be written to repositories in accordance
with the following two rules:

1. Metadata filenames SHALL be qualified with version numbers. If a meta-
data file A is specified as FILENAME.EXT in another metadata file B,
then it SHALL be written as VERSION.FILENAME.EXT, where VER-
SION is A’s version number, as defined in Section 5.2.1, with one excep-
tion: If the version number of the Timestamp metadata file might not be
known in advance by a client, it MAY be read from, and written to, a
repository using a filename without a version number qualification, i.e.,
FILENAME.EXT.

2. If an image is specified in a Targets metadata file as FILENAME.EXT, it
SHALL be written to the repository as HASH.FILENAME.EXT, where
HASH is one of the hash digests of the file, as specified in Section 5.2.3.1.
The file MUST be written to the repository using n different filenames,
one for each hash digest listed in its corresponding Targets metadata.

For example:

• The version number of the Snapshot metadata file is 61, and its filename in
the Timestamp metadata is snapshot.json. The filename on the repository
will be 61.snapshot.json.

• There is an image with the filename acme_firmware.bin specified in the
Targets metadata, with a SHA3-256 of aaaa and a SHA-512/224 of bbbb.
It will have two filenames on the repository: aaaa.acme_firmware.bin and
bbbb.acme_firmware.bin.

5.3. Server / repository implementation requirements
An Uptane implementation SHALL make the following services available to
vehicles:

• Image repository

• Director repository

Additionally, an Uptane implementation requires ECUs to have a secure way to
know the current time.

5.3.1. Image repository
The Image repository exists to allow an OEM and/or its suppliers to upload
images and their associated metadata. It makes these images and their metadata
available to vehicles. The Image repository is designed to be primarily controlled
by human actors, and updated relatively infrequently.

The Image repository SHALL expose an interface permitting the download of
metadata and images. This interface SHOULD be public.

18

The Image repository SHALL require authorization for writing metadata and
images.

The Image repository SHALL provide a method for authorized users to upload
images and their associated metadata. It SHALL check that a user writing
metadata and images is authorized to do so for that specific image by checking
the chain of delegations as described in Section 5.2.3.2.

The Image repository SHALL implement storage which permits authorized users
to write an image file using a unique filename, and later read the same file using
the same name. It MAY use any filesystem, key-value store, or database that
fulfills this requirement.

The Image repository MAY require authentication for read access.

5.3.2. Director repository
The Director repository instructs ECUs as to which images should be installed
by producing signed metadata on demand. Unlike the Image repository, it is
mostly controlled by automated, online processes. It also consults a private
inventory database containing information on vehicles, ECUs, and software re-
visions.

The Director repository SHALL expose an interface for Primaries to upload
vehicle version manifests (Section 5.4.2.1.1) and download metadata. This in-
terface SHOULD be public. The Director MAY encrypt images for ECUs that
require them, either by encrypting on-the-fly or by storing encrypted images on
the repository.

The Director repository SHALL implement storage which permits an automated
service to write generated metadata files. It MAY use any filesystem, key-value
store, or database that fulfills this requirement.

5.3.2.1. Directing installation of images on vehicles
A Director repository MUST conform to the following six-step process for di-
recting the installation of software images on a vehicle.

1. The Director SHOULD first identify the vehicle. This MAY be done
when the Director receives a vehicle version manifest sent by a Primary
(as described in Section 5.4.2.1), decodes the manifest, and determines
the unique vehicle identifier. Additionally, the Director MAY utilize other
mechanisms to uniquely identify a vehicle (e.g., 2-way TLS with unique
client certificates).

2. Using the vehicle identifier, the Director queries its inventory database (as
described in Section 5.3.2.2) for relevant information about each ECU in
the vehicle.

19

3. The Director SHALL check the manifest for accuracy compared to the in-
formation in the inventory database. If any of the required checks fail, the
Director MAY drop the request. An implementer MAY make additional
checks if desired. At a minimum, the Director SHALL check the following:

• Each ECU recorded in the inventory database is also represented in
the manifest.

• The signature of the manifest matches the ECU key of the Primary
that sent it.

• The signature of each Secondary’s contribution to the manifest
matches the ECU key of that Secondary.

4. The Director SHOULD check that the nonce or counter in each ECU
version report has not been used before to prevent a replay of the ECU
version report. If the nonce or counter is reused the Director SHOULD
drop the request.

5. The Director extracts information about currently installed images from
the vehicle version manifest. Using this information, it determines if the
vehicle is already up-to-date, and if not, determines a set of images that
should be installed. The exact process by which this determination takes
place is out of scope for this Standard. However, the Director MUST take
into account dependencies and conflicts between images and SHOULD
consult well-established techniques for dependency resolution.

6. The Director MAY encrypt images for ECUs that require it.

7. The Director generates new metadata representing the desired set of im-
ages to be installed on the vehicle, based on the dependency resolution
in step 4. This includes Targets (Section 5.2.3), Snapshot (Section 5.2.4),
and Timestamp (Section 5.2.5) metadata. It then sends this metadata to
the Primary as described in Section 5.4.2.3.

5.3.2.2. Inventory Database
The Director SHALL use a private inventory database to store information
about ECUs and vehicles. An implementer MAY use any durable database for
this purpose.

The inventory database MUST record the following pieces of information:

• Per vehicle:

– A unique identifier (such as a VIN)

• Per ECU:

– A unique identifier (such as a serial number)

– The vehicle identifier the ECU is associated with

20

– An ECU key (symmetric or asymmetric; for asymmetric keys, only
the public part SHOULD be stored)

– The ECU key identifier (as defined in Section 5.2.1)

– Whether the ECU is a Primary or a Secondary

The inventory database MAY record other information about ECUs and vehicles.
It SHOULD record a hardware identifier for each ECU to protect against the
possibility of directing the ECU to install incompatible firmware.

5.4. In-vehicle implementation requirements
An Uptane-compliant ECU SHALL be able to download and verify image meta-
data and image binaries before installing a new image and MUST have a secure
way of verifying the current time, or a sufficiently recent attestation of the time.

All ECUs SHOULD monitor the download speed of image metadata and image
binaries to detect and respond to a slow retrieval attack. If the download is
slower than a pre-defined threshold, the ECU SHOULD send an alert to the
Director repository, for example as part of the next vehicle version manifest.

Each ECU receiving over-the-air updates in a vehicle is either a Primary or a
Secondary ECU. A Primary ECU collects and delivers to the Director vehicle
manifests (Section 5.4.2.1.1) that contain information about which images have
been installed on ECUs in the vehicle. It also verifies the time, and downloads
and verifies the latest metadata and images for itself and for its Secondaries. A
Secondary ECU verifies the time, and downloads and verifies the latest metadata
and images for itself from its associated Primary ECU. It also sends signed
information about its installed images to its associated Primary.

All ECUs MUST verify image metadata as specified in Section 5.4.4 before in-
stalling an image or making it available to other ECUs. A Primary ECU MUST
perform full verification (Section 5.4.4.2). A Secondary ECU SHOULD perform
full verification if possible. If a Secondary cannot perform full verification, it
SHALL, at the very least, perform partial verification. In addition, it MAY also
perform some steps from the full verification process. See the Uptane Deploy-
ment Best Practices document ([DEPLOY]) for a discussion of how to choose
between partial and full verification.

ECUs MUST have a secure source of time. An OEM/Uptane implementer MAY
use any external source of time that is demonstrably secure. The Uptane De-
ployment Best Practices document ([DEPLOY]) describes one way to implement
an external time server to cryptographically attest time, as well as the security
properties required.

21

5.4.1. Build-time prerequisite requirements for ECUs
For an ECU to be capable of receiving Uptane-secured updates, it MUST have
the following data provisioned at the time it is manufactured or installed in the
vehicle:

1. A sufficiently recent copy of required Uptane metadata at the time of
manufacture or install. This is necessary for the ECU to authenticate
that the remote repository is legitimate when it first downloads metadata
in the field. See Uptane Deployment Best Practices ([DEPLOY]) for more
information.

• Partial verification Secondary ECUs MUST have the Root and Tar-
gets metadata from the Director repository (to reduce the scope of
rollback and replay attacks). These ECUs MAY also have metadata
from other roles or the Image repository if they will be used by the
Secondary.

• Full verification ECUs MUST have a complete set of metadata (Root,
Targets, Snapshot, and Timestamp) from both repositories (to pre-
vent rollback and replay attacks), as well as the repository mapping
metadata (Section 5.2.6). Delegations are not required.

2. The current time, or a secure attestation of a sufficiently recent time.

3. An ECU key. This is a private key, unique to the ECU, used to sign
ECU version reports and decrypt images. An ECU key MAY be either
a symmetric key or an asymmetric key. If it is an asymmetric key, there
MAY be separate keys for encryption and signing. For the purposes of this
Standard, the set of private keys that an ECU uses is referred to as the
ECU key (singular), even if it is actually multiple keys used for different
purposes.

5.4.2. What the Primary does
A Primary downloads, verifies, and distributes the latest time, metadata, and
images. To do so, it SHALL perform the following seven steps:

1. Construct and send vehicle version manifest (Section 5.4.2.1)

2. Download and check current time (Section 5.4.2.2)

3. Download and verify metadata (Section 5.4.2.3)

4. Download and verify images (Section 5.4.2.4)

5. OPTIONAL: Send latest time to Secondaries (Section 5.4.2.5)

6. Send metadata to Secondaries (Section 5.4.2.6)

7. Send images to Secondaries (Section 5.4.2.7)

22

Note that the subsequent sections concerning requirements for a Primary do not
prohibit implementing Primary capabilities on an ECU that does not communi-
cate directly with the Uptane repositories. This allows for implementations to
have multiple ECUs within the vehicle performing functions equivalent to a Pri-
mary. If multiple such Primaries are included within a vehicle, each Secondary
ECU SHALL have a single Primary responsible for providing its updates.

5.4.2.1. Construct and send vehicle version manifest
The Primary SHALL build a vehicle version manifest as described in Section
5.4.2.1.1.

Once the complete manifest is built, the Primary MAY send the manifest to the
Director repository. However, it is not strictly required that the Primary send
the manifest until step three. If permitted by the implementation, a Primary
MAY send only a diff of the manifest to save bandwidth. If an implementation
permits diffs, the Director SHOULD have a way to request a full manifest.

Secondaries MAY send their version report at any time so that it is already
stored on the Primary when it wishes to check for updates. Alternatively, the
Primary MAY request a version report from each Secondary at the time of the
update check.

5.4.2.1.1. Vehicle version manifest
The vehicle version manifest is a metadata structure that MUST contain the
following information:

• An attribute containing the signature(s) of the payload, each specified by:

– The public key identifier of the key being used to sign the payload

– The signing method (i.e., ed25519, rsassa-pss, etc.)

– A hash of the payload to be signed

– The hashing function used (i.e., SHA3-256, SHA-512/224, etc.)

– The signature of the hash

• A payload representing the installed versions of each software image on
the vehicle. This payload SHALL contain:

– The vehicle’s unique identifier (e.g., the VIN)

– The Primary ECU’s unique identifier (e.g., the serial number)

– A list of ECU version reports as specified in Section 5.4.2.1.2

Note that one of the ECU version reports should be the version report for the
Primary itself.

23

5.4.2.1.2. ECU version report
An ECU version report is a metadata structure that MUST contain the following
information:

• An attribute containing the signature(s) of the payload, each specified by:

– The public key identifier of the key being used to sign the payload

– The signing method (i.e., ed25519, rsassa-pss, etc.)

– A hash of the payload to be signed

– The hashing function used (i.e., SHA3-256, SHA-512/224, etc.)

– The signature of the hash

• A payload containing:

– The ECU’s unique identifier (e.g., the serial number)

– The filename, length, and hashes of its currently installed image (i.e.,
the non-custom Targets metadata for this particular image)

– An indicator of any detected security attack

– The latest time the ECU can verify at the time this version report
was generated

– A nonce or counter to prevent a replay of the ECU version report.
This value MUST change each update cycle. It MAY be a crypto-
graphic nonce used with a time server as described in Uptane Deploy-
ment Best Practices ([DEPLOY]).

5.4.2.2. Download and check current time
The Primary SHALL load the current time from a secure source.

5.4.2.3. Download and verify metadata
The Primary SHALL download metadata for all targets and perform a full
verification on it as specified in Section 5.4.4.2.

5.4.2.4. Download and verify images
The Primary SHALL download and verify images for itself and for all of its
associated Secondaries. Images SHALL be verified by checking that the hash of
the image file matches the hash specified in the Director’s Targets metadata for
that image.

There may be several different filenames that all refer to the same image binary,
as described in Section 5.2.7. If the Primary has received multiple hashes for
a given image binary via the Targets role (see Section 5.2.3.1) then it SHALL

24

verify every hash for this image even though the image is identified by a single
hash as part of its filename.

5.4.2.5. Send latest time to Secondaries
Unless the Secondary ECU has its own way of verifying the time or does not
have the capacity to verify a time message, the Primary is CONDITIONALLY
REQUIRED to send the time to each ECU. The Secondary will verify the time
message, then overwrite its current time with the received time.

5.4.2.6. Send metadata to Secondaries
The Primary SHALL send its latest downloaded metadata to all of its associ-
ated Secondaries. The metadata it sends to each Secondary MUST include all
of the metadata required for verification on that Secondary. For full verification
Secondaries, this includes the metadata for all four roles from both repositories,
plus any delegated Targets metadata files the Secondary will recurse through
to find the proper delegation. For partial verification Secondaries, this MAY in-
clude fewer metadata files; at a minimum, it includes only the Targets metadata
file from the Director repository.

The Primary SHOULD determine the minimal set of metadata files to send
to each Secondary by performing delegation resolution as described in Section
5.4.4.2.

Each Secondary SHALL store the latest copy of all metadata required for its
own verification.

5.4.2.7. Send images to Secondaries
The Primary SHALL send the latest image to each of its associated Secondaries
that have sufficient storage to receive it.

For Secondaries without sufficient storage to store a copy of the image, the
Primary SHOULD wait for a request from the Secondary to stream the new
image file to it. The Secondary will send the request once it has verified the
metadata sent in the previous step.

5.4.3. Installing images on Primary or Secondary ECUs
An ECU SHALL perform the following steps when attempting to install a new
image:

1. Verify latest attested time. This is optional if the ECU does not have the
capacity to verify a time message (Section 5.4.3.1)

2. Verify metadata (Section 5.4.3.2)

3. Download latest image (Section 5.4.3.3)

25

4. Verify image (Section 5.4.3.4)

5. Install image (Section 5.4.3.5)

6. Create and send version report (Section 5.4.3.6)

5.4.3.1. Load and verify the latest attested time
IF the ECU has the capability to verify a time message, the ECU is CONDI-
TIONALLY REQUIRED to load and verify the current time, or the most recent
securely attested time.

5.4.3.2. Verify metadata
The ECU SHALL verify the latest downloaded metadata (Section 5.4.4) using
either full or partial verification. If the metadata verification fails for any reason,
the ECU SHALL jump to the final step (Section 5.4.3.6).

5.4.3.3. Download latest image
If the ECU has limited secondary storage, i.e., insufficient buffer storage to
temporarily store the latest image before installing it, it SHALL download the
latest image from the Primary. (If the ECU has sufficient secondary storage, it
will already have the latest image in its secondary storage as specified in Section
5.4.2.7, and should skip to the next step.) The ECU MAY first create a backup
of its previous working image and store it elsewhere (e.g., the Primary).

The filename used to identify the latest known image (i.e., the file to request
from the Primary) SHALL be determined as follows:

1. Load the Targets metadata file from the Director repository.

2. Find the Targets metadata associated with this ECU identifier.

3. Construct the Image filename using the rule in Section 5.2.7, or use the
download URL specified in the Director metadata.

4. If there is no Targets metadata about this image, abort the update cycle
and report that there is no such image. Additionally, in the case of failure,
the ECU SHALL retain its previous Targets metadata instead of using
the new Targets metadata. Otherwise, download the image (up to the
number of bytes specified in the Targets metadata) and verify it according
to Section 5.4.3.4.

When the Primary responds to the download request, the ECU SHALL over-
write its current image with the downloaded image from the Primary.

If any part of this step fails, the ECU SHALL jump to the final step (Section
5.4.3.6).

26

5.4.3.4. Verify image
The ECU SHALL verify that the latest image matches the latest metadata as
follows:

1. Load the latest Targets metadata file from the Director.

2. Find the Targets metadata associated with this ECU identifier.

3. Check that the hardware identifier in the metadata matches the ECU’s
hardware identifier.

4. Check that the image filename is valid for this ECU. This MAY be a
comparison against a wildcard path, which restricts the ECUs to which a
delegation will apply.

5. Check that the release counter of the image in the previous metadata, if it
exists, is less than or equal to the release counter in the latest metadata.

6. If the image is encrypted, decrypt the image with a decryption key to be
chosen as follows:

• If the ECU key is a symmetric key, the ECU SHALL use the ECU
key for image decryption.

• If the ECU key is asymmetric, the ECU SHALL check the Targets
metadata for an encrypted symmetric key. If such a key is found, the
ECU SHALL decrypt the symmetric key using its ECU key, and use
the decrypted symmetric key for image decryption.

• If the ECU key is asymmetric and there is no symmetric key in the
Targets metadata, the ECU SHALL use its ECU key for image de-
cryption.

7. Check that all hashes listed in the metadata match the corresponding
hashes of the image.

If the ECU has enough secondary storage capacity to store the image, the checks
SHOULD be performed on the image in secondary storage before it is installed.

When checking hashes, the ECU SHOULD additionally check that the length
of the image matches the length listed in the metadata.

Note Verifying image size along with the
hashes will become a requirement in a
future version of the Uptane
Standard.

27

Note See [DEPLOY] for guidance on how
to deal with Secondary ECU failures
for ECUs that have limited secondary
storage.

If any step fails, the ECU SHALL jump to the final step (Section 5.4.3.6).

5.4.3.5. Install image
The ECU SHALL attempt to install the update. This installation SHOULD
occur at a time when all pre-conditions are met. These pre-conditions MAY
include ensuring the vehicle is in a safe environment for install (e.g., the vehicle
is parked when updating a specific ECU). Another pre-condition MAY include
ensuring the ECU has a backup of its current image and metadata in case the
current installation fails.

5.4.3.6. Create and send version report
The ECU SHALL create a version report as described in Section 5.4.2.1.2, and
send it to the Primary (or simply save it to disk, if the ECU is a Primary). The
Primary SHOULD write the version reports it receives to disk and associate
them with the Secondaries that sent them.

5.4.4. Metadata verification procedures
A Primary ECU MUST perform full verification of metadata. A Secondary ECU
SHOULD perform full verification of metadata. If a Secondary cannot perform
full verification, it SHALL, at the very least, perform partial verification.

If a step in the following workflows does not succeed (e.g., the update is aborted
because a new metadata file was not signed), an ECU SHOULD still be able to
update again in the future. Errors raised during the update process SHOULD
NOT leave ECUs in an unrecoverable state.

5.4.4.1. Partial verification
In order to perform partial verification, an ECU SHALL perform the following
steps:

1. Load and verify the current time or the most recent securely attested time.

2. Download and check the Targets metadata file from the Director reposi-
tory, following the procedure in Section 5.4.4.6.

Note that this verification procedure is the smallest set of Uptane checks per-
missible for an Uptane Secondary ECU. An ECU MAY additionally implement
more metadata checks.

28

For example, an ECU MAY also fetch and verify Root metadata from the Direc-
tor (following the procedure in Section 5.4.4.3) before checking Targets metadata.
Performing this additional check would provide the ECU with a secure way to
receive and validate a rotation of the Director’s Targets key.

See [DEPLOY] for more discussion on this topic.

5.4.4.2. Full verification
Full verification of metadata means that the ECU checks that the Targets meta-
data about images from the Director repository matches the Targets metadata
about the same images from the Image repository. This provides resilience to
a key compromise in the system.

Full verification MUST be performed by Primary ECUs and SHOULD be per-
formed by Secondary ECUs. In the following instructions, whenever an ECU is
directed to download metadata, it applies only to Primary ECUs.

Before starting full verification, the repository mapping metadata MUST be
consulted to determine where to download metadata from. This procedure
assumes the basic Uptane case: there are only two repositories (Director and
Image), and all image paths are required to be signed by both repositories. If a
more complex repository layout is being used, refer to [DEPLOY] for guidance
on how to determine where metadata should be downloaded from.

In order to perform full verification, an ECU SHALL perform the following
steps:

1. Load and verify the current time or the most recent securely attested time.

2. Download and check the Root metadata file from the Director repository,
following the procedure in Section 5.4.4.3.

3. Download and check the Timestamp metadata file from the Director repos-
itory, following the procedure in Section 5.4.4.4.

4. Check the previously downloaded Snapshot metadata file from the Direc-
tory repository (if available). If the hashes and version number of that
file match the hashes and version number listed in the new Timestamp
metadata, there are no new updates and the verification process MAY be
stopped and considered complete. Otherwise, download and check the
Snapshot metadata file from the Director repository, following the proce-
dure in Section 5.4.4.5.

5. Download and check the Targets metadata file from the Director reposi-
tory, following the procedure in Section 5.4.4.6.

6. If the Targets metadata from the Directory repository indicates that there
are no new targets that are not already currently installed, the verification
process MAY be stopped and considered complete. Otherwise, download

29

and check the Root metadata file from the Image repository, following the
procedure in Section 5.4.4.3.

7. Download and check the Timestamp metadata file from the Image repos-
itory, following the procedure in Section 5.4.4.4.

8. Check the previously downloaded Snapshot metadata file from the Im-
age repository (if available). If the hashes and version number of that
file match the hashes and version number listed in the new Timestamp
metadata, the ECU MAY skip to the last step. Otherwise, download and
check the Snapshot metadata file from the Image repository, following the
procedure in Section 5.4.4.5.

9. Download and check the top-level Targets metadata file from the Image
repository, following the procedure in Section 5.4.4.6.

10. Verify that Targets metadata from the Director and Image repositories
match. A Primary ECU MUST perform this check on metadata for all
images listed in the Targets metadata file from the Director repository
downloaded in step 6. A Secondary ECU MAY elect to perform this
check only on the metadata for the image it will install. (That is, the
image metadata from the Director that contains the ECU identifier of the
current ECU.) To check that the metadata for an image matches, complete
the following procedure:

a. Locate and download a Targets metadata file from the Image reposi-
tory that contains an image with exactly the same filename listed in
the Director metadata, following the procedure in Section 5.4.4.7.

b. Check that the Targets metadata from the Image repository matches
the Targets metadata from the Director repository:

i. Check that the non-custom metadata (i.e., length and hashes) of
the unencrypted or encrypted image are the same in both sets
of metadata. Note: the Primary is responsible for validating en-
crypted images and associated metadata. The target ECU (Pri-
mary or Secondary) is responsible for validating the unencrypted
image and associated metadata.

ii. Check that all MUST match custom metadata (e.g., hardware
identifier and release counter) are the same in both sets of meta-
data.

iii. Check that the release counter in the previous Targets metadata
file is less than or equal to the release counter in this Targets
metadata file.

If any step fails, the ECU MUST return an error code indicating the failure. If
a check for a specific type of security attack fails (i.e., rollback, freeze, arbitrary
software, etc.), the ECU SHOULD return an error code that indicates the type
of attack.

30

5.4.4.3. How to check Root metadata
To properly check Root metadata, an ECU SHOULD:

1. Load the previous Root metadata file.

2. Update to the latest Root metadata file.

a. Let N denote the version number of the latest Root metadata file
(which at first could be the same as the previous Root metadata
file).

b. Try downloading a new version N+1 of the Root metadata file, up
to some X number of bytes. The value for X is set by the imple-
menter. For example, X may be tens of kilobytes. The filename
used to download the Root metadata file is of the fixed form VER-
SION_NUMBER.FILENAME.EXT (e.g., 42.root.json). If this file
is not available, the current Root metadata file is the latest; continue
with step 3.

c. Version N+1 of the Root metadata file MUST have been signed by
the following: (1) a threshold of unique keys specified in the latest
Root metadata file (version N), and (2) a threshold of unique keys
specified in the new Root metadata file being validated (version N+1).
If version N+1 is not signed as required, discard it, abort the update
cycle, and report the signature failure. On the next update cycle,
begin at version N of the Root metadata file. (Checks for an arbitrary
software attack.)

d. The version number of the latest Root metadata file (version N) must
be less than or equal to the version number of the new Root metadata
file (version N+1). Effectively, this means checking that the version
number signed in the new Root metadata file is indeed N+1. If the
version of the new Root metadata file is less than the latest metadata
file, discard it, abort the update cycle, and report the rollback attack.
On the next update cycle, begin at step 1 and version N of the Root
metadata file. (Checks for a rollback attack.)

e. Set the latest Root metadata file to the new Root metadata file.

f. Repeat steps 2.1 to 2.6.

3. Check that the current (or latest securely attested) time is lower than
the expiration timestamp in the latest Root metadata file. (Checks for a
freeze attack.)

4. If the Timestamp and/or Snapshot keys have been rotated, delete the
previous Timestamp and Snapshot metadata files. (Checks for recovery
from fast-forward attacks [MERCURY].)

31

5.4.4.4. How to check Timestamp metadata
To properly check Timestamp metadata, an ECU SHOULD:

1. Download up to Y number of bytes. The value for Y is set by the imple-
menter. For example, Y may be tens of kilobytes. The filename used
to download the Timestamp metadata file is of the fixed form FILE-
NAME.EXT (e.g., timestamp.json).

2. Check that it has been signed by the threshold of unique keys specified
in the latest Root metadata file. If the new Timestamp metadata file is
not properly signed, discard it, abort the update cycle, and report the
signature failure. (Checks for an arbitrary software attack.)

3. Check that the version number of the previous Timestamp metadata file,
if any, is less than or equal to the version number of this Timestamp
metadata file. If the new Timestamp metadata file is older than the trusted
Timestamp metadata file, discard it, abort the update cycle, and report
the potential rollback attack. (Checks for a rollback attack.)

4. Check that the current (or latest securely attested) time is lower than
the expiration timestamp in this Timestamp metadata file. If the new
Timestamp metadata file has expired, discard it, abort the update cycle,
and report the potential freeze attack. (Checks for a freeze attack.)

5.4.4.5. How to check Snapshot metadata
To properly check Snapshot metadata, an ECU SHOULD:

1. Download up to the number of bytes specified in the Timestamp metadata
file, constructing the metadata filename as defined in Section 5.2.7.

2. The hashes and version number of the new Snapshot metadata file MUST
match the hashes and version number listed in the Timestamp metadata.
If the hashes and version number do not match, discard the new Snapshot
metadata, abort the update cycle, and report the failure. (Checks for a
mix-and-match attack.)

3. Check that it has been signed by the threshold of unique keys specified
in the latest Root metadata file. If the new Snapshot metadata file is
not signed as required, discard it, abort the update cycle, and report the
signature failure. (Checks for an arbitrary software attack.)

4. Check that the version number of the previous Snapshot metadata file, if
any, is less than or equal to the version number of this Snapshot metadata
file. If this Snapshot metadata file is older than the previous Snapshot
metadata file, discard it, abort the update cycle, and report the potential
rollback attack. (Checks for a rollback attack.)

5. Check that the version number listed by the previous Snapshot metadata
file for each Targets metadata file is less than or equal to its version number

32

in this Snapshot metadata file. If this condition is not met, discard the
new Snapshot metadata file, abort the update cycle, and report the failure.
(Checks for a rollback attack.)

6. Check that each Targets metadata filename listed in the previous Snapshot
metadata file is also listed in this Snapshot metadata file. If this condition
is not met, discard the new Snapshot metadata file, abort the update cycle,
and report the failure. (Checks for a rollback attack.)

7. Check that the current (or latest securely attested) time is lower than the
expiration timestamp in this Snapshot metadata file. If the new Snapshot
metadata file is expired, discard it, abort the update cycle, and report the
potential freeze attack. (Checks for a freeze attack.)

5.4.4.6. How to check Targets metadata
To properly check Targets metadata, an ECU SHOULD:

1. Download up to Z number of bytes, constructing the metadata filename
as defined in Section 5.2.7. The value for Z is set by the implementer. For
example, Z may be tens of kilobytes.

2. The version number of the new Targets metadata file MUST match the
version number listed in the latest Snapshot metadata. If the version
number does not match, discard it, abort the update cycle, and report the
failure. (Checks for a mix-and-match attack.) This step MAY be skipped
when checking Targets metadata on a partial verification ECU, as these
ECUs might not have Snapshot metadata.

3. Check that the Targets metadata has been signed by the threshold of
unique keys specified in the relevant metadata file. (Checks for an arbi-
trary software attack.):

a. If checking top-level Targets metadata, the threshold of keys is spec-
ified in the Root metadata.

b. If checking delegated Targets metadata, the threshold of keys is spec-
ified in the Targets metadata file that delegated authority to this
role.

4. Check that the version number of the previous Targets metadata file, if
any, is less than or equal to the version number of this Targets metadata
file. (Checks for a rollback attack.)

5. Check that the current (or latest securely attested) time is lower than the
expiration timestamp in this Targets metadata file. (Checks for a freeze
attack.)

6. If checking Targets metadata from the Director repository, verify that
there are no delegations.

33

7. If checking Targets metadata from the Director repository, check that no
ECU identifier is represented more than once.

8. If checking Targets metadata from the Director repository, and the ECU
performing the verification is the Primary ECU, check that all listed ECU
identifiers correspond to ECUs that are actually present in the vehicle.

5.4.4.7. How to resolve delegations
To properly check Targets metadata for an image, an ECU MUST locate the
metadata file(s) for the role (or roles) that have the authority to sign the image.
This metadata might be located in the top-level Targets metadata, but it may
also be delegated to another role or to multiple roles. Therefore, all delegations
MUST be resolved using the following recursive procedure, beginning with the
top-level Targets metadata file.

1. Download and check the current metadata file, following the procedure in
Section 5.4.4.6. If the file cannot be loaded, or if any verification step fails,
abort the delegation resolution, and indicate that image metadata cannot
be found because of a missing or invalid role.

2. If the current metadata file contains signed metadata about the image,
end the delegation resolution and return the metadata to be checked.

3. If the current metadata file was reached via a terminating delegation and
does not contain signed metadata about the image, abort the delegation
resolution for this image and return an error indicating that image meta-
data could not be found.

4. Search the list of delegations, in listed order. For each delegation:

a. Check if the delegation applies to the image being processed. For the
delegation to apply, it MUST include the hardware identifier of the
target, and the target name MUST match one of the delegation’s im-
age paths. If either of these tests fail, move on to the next delegation
in the list.

b. If the delegation is a multi-role delegation, follow the procedure de-
scribed in Section 5.4.4.8. If the multi-role delegation is terminating
and no valid image metadata is found, abort the delegation resolu-
tion and return an error indicating that image metadata could not
be found.

c. If the delegation is a normal delegation, perform delegation resolution,
starting at step 1. Note that this may recurse an arbitrary number
of levels deep. If a delegation that applies to the image is found
but no image metadata is found in the delegated roles or any of its
sub-delegations, simply continue on with the next delegation in the
list. The search is only completed or aborted if image metadata or a
terminating delegation that applies to the image is found.

34

5. If the end of the list of delegations in the top-level metadata is reached
without finding valid image metadata, return an error indicating that im-
age metadata could not be found.

5.4.4.8. Multi-role delegations
It is possible to delegate signing authority to multiple delegated roles as de-
scribed in [TAP-3]. Each multi-role delegation effectively contains a list of ordi-
nary delegations, plus a threshold of those roles that must be in agreement about
the non-custom metadata for the image. All multi-role delegations MUST be
resolved using the following procedure. Note that there may be sub-delegations
inside multi-role delegations.

1. For each of the roles in the delegation, find and load the image metadata
following the procedure in Section 5.4.4.7.

2. Inspect the non-custom part of the metadata loaded in step 1:

a. Locate all sets of roles that have agreeing (i.e., identical) non-custom
metadata and “MUST match” custom metadata. Discard any set of
roles with a size smaller than the threshold of roles that must be in
agreement for this delegation.

b. Check for a conflict. A conflict exists if there is more than one agree-
ing set of roles, yet each set has different metadata. If a conflict is
found, choose and return the metadata from the set of roles which
includes the earliest role in the multi-delegation list.

c. If there is no conflict, check if there is any single set of roles with
matching non-custom metadata. If there is, choose and return the
metadata from this set.

d. If no agreeing set can be found that meets the agreement threshold,
return an error indicating that image metadata could not be found.

6. References
6.1. Normative References

[NFC] Davis, M. and M. Duerst, ”Unicode
Standard Annex #15: Unicode
Normalization Forms”, October 2018.

[RFC2119] Bradner, S., ”Key words for use in
RFCs to Indicate Requirement
Levels”, BCP 14, RFC 2119, DOI
10.17487/RFC2119, March 1997.

35

https://www.unicode.org/reports/tr15/
https://www.unicode.org/reports/tr15/
https://www.unicode.org/reports/tr15/
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119

[RFC3647] Chokhani, S., Ford, W., Sabett, R.,
Merrill, C. and S. Wu, ”Internet
X.509 Public Key Infrastructure
Certificate Policy and Certification
Practices Framework”, RFC 3647,
DOI 10.17487/RFC3647, November
2003.

[RFC5198] Klensin, J. and M. Padlipsky,
”Unicode Format for Network
Interchange”, RFC 5198, DOI
10.17487/RFC5198, March 2008.

[TAP-3] Kuppusamy, T., Awwad, S., Cordell,
E., Diaz, V., Moshenko, J. and J.
Cappos, ”The Update Framework
TAP 3 - Multi-role delegations”,
January 2018.

[TAP-4] Kuppusamy, T., Awwad, S., Cordell,
E., Diaz, V., Moshenko, J. and J.
Cappos, ”The Update Framework
TAP 4 - Multiple repository
consensus on entrusted targets”,
December 2017.

[TUF-spec] Samuel, J., Mathewson, N., Condra,
G., Diaz, V., Kuppusamy, T., Awwad,
S., Tobias, S., Wright, J., Mehnert,
H., Tryzelaar, E., Cappos, J. and R.
Dingledine, ”The Update Framework
Specification”, September 2018.

6.2. Informative References

[CR-OTA] Barry, K., ”Automakers Embrace
Over-the-Air Updates, but Can We
Trust Digital Car Repair?”, April
2018.

[DEPLOY] Members of the Uptane Community,
., ”Uptane Deployment Best
Practices”, n.d..

[IN-TOTO] ”in-toto: A framework to secure the
integrity of software supply chains”,
October 2018.

36

https://tools.ietf.org/html/rfc3647
https://tools.ietf.org/html/rfc3647
https://tools.ietf.org/html/rfc3647
https://tools.ietf.org/html/rfc3647
https://tools.ietf.org/html/rfc5198
https://tools.ietf.org/html/rfc5198
https://github.com/theupdateframework/taps/blob/d0818e580c322815a473520f2e8cc5f5eb8df499/tap3.md
https://github.com/theupdateframework/taps/blob/d0818e580c322815a473520f2e8cc5f5eb8df499/tap3.md
https://github.com/theupdateframework/taps/blob/2cb67d913ec19424d1e354b38f862886fbfd4105/tap4.md
https://github.com/theupdateframework/taps/blob/2cb67d913ec19424d1e354b38f862886fbfd4105/tap4.md
https://github.com/theupdateframework/taps/blob/2cb67d913ec19424d1e354b38f862886fbfd4105/tap4.md
https://github.com/theupdateframework/specification/blob/2b4e18472fe25d5b57f36f6fa50104967c8faeaa/tuf-spec.md
https://github.com/theupdateframework/specification/blob/2b4e18472fe25d5b57f36f6fa50104967c8faeaa/tuf-spec.md
https://www.consumerreports.org/automotive-technology/automakers-embrace-over-the-air-updates-can-we-trust-digital-car-repair/
https://www.consumerreports.org/automotive-technology/automakers-embrace-over-the-air-updates-can-we-trust-digital-car-repair/
https://www.consumerreports.org/automotive-technology/automakers-embrace-over-the-air-updates-can-we-trust-digital-car-repair/
https://uptane.github.io/deployment-considerations/index.html
https://uptane.github.io/deployment-considerations/index.html
https://in-toto.io/
https://in-toto.io/

[MERCURY] Kuppusamy, T., Diaz, V. and J.
Cappos, ”Mercury:
Bandwidth-Effective Prevention of
Rollback Attacks Against Community
Repositories”, ISBN
978-1-931971-38-6, July 2017.

[PEP-458] Kuppusamy, T., Diaz, V., Stufft, D.
and J. Cappos, ”PEP
458 — Surviving a Compromise of
PyPI”, September 2013.

[UPTANEESCAR] Kuppusamy, T., Brown, A., Awwad,
S., McCoy, D., Bielawski, R., Mott,
C., Lauzon, S., Weimerskirch, A. and
J. Cappos, ”Securing Software
Updates for Automobiles”, October
2016.

[USATODAY] O’Donnell, B., ”Your average car is a
lot more code-driven than you think”,
June 2016.

Author’s Address
[.vcardline]# Uptane Community [.n .hidden]# Members of the Uptane Com-
munity # # Joint Development Foundation Projects, LLC, Uptane Series (c/o
Prof. Justin Cappos) [.adr]# 6 MetroTech [.vcardline]# Brooklyn, NY 11201
USA # EMail: uptane-standards@googlegroups.com

Last updated 2021-07-15 09:05:30 +0200

37

https://www.usenix.org/system/files/conference/atc17/atc17-kuppusamy.pdf
https://www.usenix.org/system/files/conference/atc17/atc17-kuppusamy.pdf
https://www.usenix.org/system/files/conference/atc17/atc17-kuppusamy.pdf
https://www.usenix.org/system/files/conference/atc17/atc17-kuppusamy.pdf
https://www.python.org/dev/peps/pep-0458/
https://www.python.org/dev/peps/pep-0458/
https://www.python.org/dev/peps/pep-0458/
https://ssl.engineering.nyu.edu/papers/kuppusamy_escar_16.pdf
https://ssl.engineering.nyu.edu/papers/kuppusamy_escar_16.pdf
https://www.usatoday.com/story/tech/columnist/2016/06/28/your-average-car-lot-more-code-driven-than-you-think/86437052/
https://www.usatoday.com/story/tech/columnist/2016/06/28/your-average-car-lot-more-code-driven-than-you-think/86437052/
mailto:uptane-standards@googlegroups.com

	Abstract
	Table of Contents
	1. Introduction
	2. Terminology
	2.1. Conformance terminology
	2.2. Terminology
	2.3. Uptane role terminology
	2.4. Acronyms and abbreviations
	3. Rationale for and scope of the Uptane Standard
	3.1. Why Uptane requires a standards document
	3.2. Scope of Standard coverage
	3.2.1. Assumptions
	3.2.2. Use cases
	3.2.2.1. OEMs initializing Uptane at the factory using SOTA
	3.2.2.2. Updating one ECU with a complete image
	3.2.2.3. Updating individual ECUs on demand
	3.2.2.4. Update one ECU with multiple deltas
	3.3. Exceptions
	3.4. Out of scope
	3.5. Design requirements
	4. Threat model and attack strategies
	4.1. Attacker goals
	4.2. Attacker capabilities
	4.3. Description of threats
	4.3.1. Read updates
	4.3.2. Deny installation of updates
	4.3.3. Interfere with ECU functionality
	4.3.4. Control an ECU or vehicle
	5. Detailed design of Uptane
	5.1. Roles on repositories
	5.1.1. The Root role
	5.1.2. The Targets role
	5.1.2.1. Delegations
	5.1.3. The Snapshot role
	5.1.4. The Timestamp role
	5.2. Metadata structures
	5.2.1. Common metadata structures
	5.2.2. Root metadata
	5.2.3. Targets metadata
	5.2.3.1. Metadata about images
	5.2.3.1.1. Custom metadata about images
	5.2.3.2. Metadata about delegations
	5.2.4. Snapshot metadata
	5.2.5. Timestamp metadata
	5.2.6. Repository mapping metadata
	5.2.7. Rules for filenames in repositories and metadata
	5.3. Server / repository implementation requirements
	5.3.1. Image repository
	5.3.2. Director repository
	5.3.2.1. Directing installation of images on vehicles
	5.3.2.2. Inventory Database
	5.4. In-vehicle implementation requirements
	5.4.1. Build-time prerequisite requirements for ECUs
	5.4.2. What the Primary does
	5.4.2.1. Construct and send vehicle version manifest
	5.4.2.1.1. Vehicle version manifest
	5.4.2.1.2. ECU version report
	5.4.2.2. Download and check current time
	5.4.2.3. Download and verify metadata
	5.4.2.4. Download and verify images
	5.4.2.5. Send latest time to Secondaries
	5.4.2.6. Send metadata to Secondaries
	5.4.2.7. Send images to Secondaries
	5.4.3. Installing images on Primary or Secondary ECUs
	5.4.3.1. Load and verify the latest attested time
	5.4.3.2. Verify metadata
	5.4.3.3. Download latest image
	5.4.3.4. Verify image
	5.4.3.5. Install image
	5.4.3.6. Create and send version report
	5.4.4. Metadata verification procedures
	5.4.4.1. Partial verification
	5.4.4.2. Full verification
	5.4.4.3. How to check Root metadata
	5.4.4.4. How to check Timestamp metadata
	5.4.4.5. How to check Snapshot metadata
	5.4.4.6. How to check Targets metadata
	5.4.4.7. How to resolve delegations
	5.4.4.8. Multi-role delegations
	6. References
	6.1. Normative References
	6.2. Informative References
	Author’s Address

