
Uptane Deployment Best Practices v.2.1.0

Contents
1 Introduction 3

2 Preparing an ECU for Uptane 4
2.1 ECU implementation choices . 4

2.1.1 Full vs. partial verification 4
2.1.2 Symmetric vs. asymmetric ECU keys 5
2.1.3 Encryption of images on ECUs 6

2.2 ECUs without filesystems . 6
2.3 ECUs without sufficient storage 7

3 Setting up Uptane repositories 7
3.1 Secure source of time . 7

3.1.1 External sources of time 7
3.2 What suppliers should do . 10
3.3 What the OEM should do . 11

3.3.1 Director repository . 11
3.3.2 Image repository . 15

3.4 Specifying wireline formats . 17
3.5 Cost considerations . 18

4 Managing signing keys and metadata expiration 19
4.1 Normative references . 19
4.2 Repository keys . 19

4.2.1 Online vs. offline keys . 19
4.2.2 Key thresholds . 20

4.3 What to do in case of key compromise 22
4.3.1 Director repository . 22
4.3.2 Image repository . 23
4.3.3 ECU keys . 24

5 Normal operating procedures 24
5.1 Updating metadata and images 25

5.1.1 Receiving updates from tier-1 suppliers 25
5.1.2 Testing metadata and images 26

1

5.2 Backup and garbage collection for the Image repository 26

6 Exceptional operations 27
6.1 Rolling back software . 27
6.2 Adding, removing, or replacing ECUs 30

6.2.1 Aftermarket ECUs . 31
6.3 Adding or removing a supplier . 32
6.4 Key compromise . 33

7 Customizing Uptane 33
7.1 Scope of an update . 33
7.2 Delta update strategies . 33

7.2.1 Dynamic delta updates vs. precomputed delta updates . . 35
7.3 Uptane in conjunction with other protocols 36
7.4 Using Uptane with transport security 37
7.5 Multiple Primaries . 37
7.6 Atomic installation of a bundle of images 38
7.7 2nd-party fleet management . 39
7.8 User-customized updates . 40
7.9 Custom installation instructions for ECUs 41

7.9.1 Accessing dynamic directions through signed images from
the Director repository . 42

7.9.2 Adding dynamic directions to the custom field of Targets
metadata . 42

7.9.3 Picking an option: security tradeoff 42
7.10 Location-based updates . 43

7.10.1 Government updates . 43

8 Enhanced security practices 44
8.0.1 Restricting image installation with custom hardware IDs . 44
8.0.2 Integrating software supply chain security into Uptane . . 45
8.0.3 Secure alternatives to conventional software and identifiers 45
8.0.4 Preventing rollback attacks in case of Director compromise 47
8.0.5 Broadcasting vs. unicasting metadata inside the vehicle . 47
8.0.6 Dependencies and conflicts between ECUs 48
8.0.7 ASN.1 decoding . 50
8.0.8 Balancing EEPROM performance and security 50
8.0.9 Balancing security and bandwidth 51
8.0.10 Using encrypted images on the Image repository 52
8.0.11 Avoiding Director replay attacks 52

9 Frequently asked questions 53
9.0.1 What makes Uptane different from other SOTA

security mechanisms? 53
9.0.2 How does Uptane work with other systems and

protocols? . 53

2

9.0.3 What are the cost implications of integrating Up-
tane? . 54

9.0.4 Must all signatures be valid for a threshold of
signatures to be valid? 54

10 Changelog 55
10.1 [Unreleased] . 55
10.2 [2.1.0] - 2023-06-6 . 55

10.2.1 Added . 55
10.2.2 Removed . 56

10.3 [2.0.0] - 2022-01-18 . 56
10.3.1 Added . 56
10.3.2 Changed . 56
10.3.3 Removed . 57

10.4 [1.2.0] - 2021-07-16 . 57
10.4.1 Added . 57
10.4.2 Changed . 58
10.4.3 Removed . 58

10.5 [1.1.0] - 2021-01-08 . 58
10.5.1 Added . 58
10.5.2 Changed . 59
10.5.3 Removed . 60

1 Introduction
Uptane is a standard, and does not have an official distribution or implementation.
However, there are a number of open source projects such as aktualizr, rust-tuf,
Notary, and OTA Community Edition implementing all or part of the Standard.
In addition, commercial Uptane offerings are available in the marketplace from
HERE Technologies and Airbiquity.

In any serious Uptane installation, even if using an existing tool or service,
a number of deployment decisions will need to be made, and policies and
practices for software signing and key management will need to be implemented.
Additionally, some OEMs may wish to develop their own Uptane implementation.
Here, we provide a set of best practices for how to set up, operate, integrate,
and adapt Uptane to work in a variety of situations. We also discuss the human
operations required, and describe Uptane-compatible ways to implement some
specific features that OEMs have requested guidance or clarification on in the
past.

All of these guidelines should be viewed as complementary to the official Uptane
Standard: they should be taken as advice, not gospel.

In addition, these guidelines may be used in the creation of POUFs. POUFs con-
tain the Protocols, Operations, Usage, and Formats of an Uptane implementation.
These details can be used to design interoperable Uptane implementations.

3

https://github.com/uptane/aktualizr
https://github.com/heartsucker/rust-tuf
https://github.com/theupdateframework/notary
https://github.com/uptane/ota-community-edition/
https://www.here.com/products/automotive/ota-technology
https://www.airbiquity.com/product-offerings/software-and-data-management
https://github.com/uptane/poufs

2 Preparing an ECU for Uptane
At the highest level, the basic requirement for an ECU to be capable of supporting
Uptane is that it be able to perform either full or partial verification, and access
a secure source of time. (See the Uptane Standard for official requirements.)

To bootstrap an Uptane-capable ECU, a few things need to be provisioned into
the unit:

• A current set of Uptane metadata, so that the ECU is able to verify
the first set of metadata it gets from the server. The exact metadata files
required depend on whether the ECU performs full or partial verification.
Full verification ECUs need a complete set of metadata from both repos-
itories, while partial verification ECUs only need the Targets metadata
from the Director repository.

• A secure way to know what time it is, so the ECU cannot be tricked
into accepting expired metadata. The ECU must receive a fairly recent
time as soon as it is powered on (or reset to factory settings) to prevent
the possibility of freeze attacks.

• ECU key(s), to sign the ECU’s version reports, and optionally to decrypt
images. These signing keys should be unique to the ECU, and the public
keys will need to be stored in the Director repository’s inventory database.

• Information about repository locations, generally in the form of a
repository mapping file. This is a metadata file that tells the ECU the
URIs of the repositories (if it is a Primary ECU), as well as which images
should be fetched from which repository. (Images that are encrypted or
customized per-device would generally come from the Director repository,
and all others from the Image repository.)

2.1 ECU implementation choices
There are three big decisions to make about each Uptane ECU: first, whether it
will perform full or partial verification, second, whether it will use an asymmetric
or symmetric ECU key, and third, whether it will use encrypted or unencrypted
update images. Here, we offer some advice on making those choices.

2.1.1 Full vs. partial verification

Uptane is designed with automotive requirements in mind, and one of the
difficulties in that space is that ECUs requiring OTA updates might have very
slow and or memory-limited microcontrollers. To accommodate those ECUs,
Uptane includes the option of partial verification. So, how do you choose between
full and partial verification for a particular ECU?

Firstly, if the ECU is a Primary ECU, partial verification is not an option.
Primaries need to perform full verification. For other ECUs, full verification is
preferable when possible, for at least two reasons:

4

https://uptane.github.io/uptane-standard/uptane-standard.html#build-time-prerequisite-requirements-for-ecus
https://uptane.github.io/papers/uptane-standard.2.0.0.html#version_report
https://uptane.github.io/papers/uptane-standard.2.0.0.html#repo_mapping_meta

1. Full verification is more secure. Because they do not check Image repository
metadata, partial verification ECUs could be instructed to install malicious
software by an attacker in possession of the Director repository’s Targets
key (and, of course, a way to send traffic on the relevant in-vehicle bus).

2. Full verification ECUs can rotate keys. As partial verification is designed
for ECUs that can only reasonably check a single signature, they do not
download or process Root metadata, which is the mechanism for revoking
and rotating signing keys for all other metadata, a partial verification ECU
has no truly secure way to invalidate a signing key.

Partial verification ECUs are expected to have the Root and Targets metadata
present at the time of manufacturing or installation in the vehicle. To update the
Root metadata, the ECU SHOULD install a new image containing the metadata.
To update the Targets metadata, the ECU SHOULD follow the steps described
in the Uptane Standard. Partial verification Secondaries MAY additionally fetch
and check metadata from other roles or the Image repository if the ECU is
powerful enough to process them, and the implementer wishes to take advantage
of their respective security benefits.

2.1.2 Symmetric vs. asymmetric ECU keys

Figure 1. An arrangement that an OEM SHOULD use when using symmetric
ECU keys.

ECUs are permitted to use either symmetric or asymmetric keys. This choice is
effectively a performance vs. security trade-off. Symmetric keys allow for faster
cryptographic operations, but expose a larger attack surface because the Director
will need online access to the key. Asymmetric ECU keys are not affected by
this problem, because the Director only needs access to the ECU’s public key.

5

https://uptane.github.io/papers/uptane-standard.2.0.0.html#partial_verification

Basically, choosing symmetric keys increases the performance of the common
case (checking signatures and decrypting images), but makes disaster recovery
harder, because a compromised key server could require updating ECU keys on
every vehicle.

2.1.2.1 Symmetric key server If you choose to use symmetric ECU keys,
it would be a good idea to store the keys on an isolated, separate key server,
rather than in the inventory database. This separate key server can then expose
only two very simple operations to the Director:

1. Check the signature on an ECU version report.
2. Given an ECU identifier and an image identifier, encrypt the image for

that ECU.

Unencrypted images should be loaded onto the symmetric key server by some
out-of-band physical channel (for example, via USB stick).

2.1.3 Encryption of images on ECUs

The Director repository may encrypt images if required (see Section 5.3.2 of
the Uptane Standard). However, no Uptane implementation should support
interactive requests from an ECU for encryption. Allowing the Target ECU to
explicitly request an encrypted image at download time would not only increase
the attack surface, but could also be used to turn off encryption. This would
make it easy for attackers to reverse engineer unencrypted firmware and steal
intellectual property. Only the OEM and its suppliers should determine policy
on encrypting particular binaries, and this policy should be configured for use
by the Director repository, rather than being toggled by the Target ECU.

2.2 ECUs without filesystems
Currently, implementation instructions are written with the implicit assumptions
that: (1) ECUs are able to parse the string filenames of metadata and images, and
that (2) ECUs may have filesystems to read and write these files. However, not
all ECUs, especially partial verification Secondaries, may fit these assumptions.
There are two important observations:

First, filenames need not be strings. Even if there is no explicit notion of “files”
on an ECU, it is important for distinct pieces of metadata and images to have
distinct names. This is needed for Primaries to perform full verification on
behalf of Secondaries, which entails comparing the metadata for different images
for different Secondaries. Either strings or numbers may be used to refer to
distinct metadata and images, as long as different files have different file names
or numbers. The Image and Director repositories can continue to use filesystems,
and may also use either strings or numbers to represent file names.

Second, ECUs need not have a filesystem in order to use Uptane. It is only
important that ECUs are able to recognize distinct metadata and images by

6

https://uptane.github.io/papers/uptane-standard.2.0.0.html#director_repository

using either strings or numbers as file names or numbers, and that they can
allocate different parts of storage to different files.

2.3 ECUs without sufficient storage
As described in the Standard, all Secondaries MUST store some metadata objects.
For partial verification Secondaries, this MAY include only the Targets metadata
from the Director repository. If an ECU does not have any or enough secondary
storage to store even just that one object, then it cannot be considered an Uptane
Secondary.

3 Setting up Uptane repositories
This section outlines recommended procedures for the one-time operations that
an OEM and its suppliers SHOULD perform when they set up Uptane for the
first time. In particular, they SHOULD correctly configure the Director and
Image repositories, and make sure they have access to a secure source of time,
so that the impact of a repository/server compromise is as limited as possible.

3.1 Secure source of time
Without access to a secure source of time, ECUs may be prevented from receiving
the most recent updates. If the ECU’s time is set too far ahead, it will determine
that the current valid metadata is expired and thus be unable to perform an
update. If the ECU’s time is set too far behind, an attacker can freeze or replay
old metadata to the ECU. (ECUs in Uptane will not accept an earlier time than
what has previously been seen and signed with the same key.)

If a Primary ECU does not have a secure clock, then that Primary ECU SHALL
use some other secure external means to acquire accurate time. If a Secondary
ECU does not have a secure clock, then the ECU SHALL use the time messages
from its Primary ECU to acquire accurate time. The following subsection
describes how time servers can be used in an Uptane implementation.

3.1.1 External sources of time

The IETF Network Time Protocol v4 NTPv4, RFC 5905 with IETF Network
Time Security for the Network Time Protocol NTS for NTP, RFC 8915 SHOULD
be used by an ECU to acquire accurate time. If IETF NTPv4 (or a higher
version) is used, then that ECU SHALL conform to IETF Network Time Protocol
Best Current Practices BCP 223 / RFC 8633. If IETF NTPv4 (or higher version)
is used, then that ECU SHALL discard any received NTP mode 6 and mode 7
packets to prevent a DDOS attack caused by an old (1989) NTP implementation
bug described here and here.

The work-in-progress IETF Roughtime protocol and the IETF Roughtime Ecosys-
tem MAY be used by an ECU to acquire sufficiently accurate time to verify

7

https://uptane.github.io/papers/uptane-standard.2.0.0.html#send_metadata_primary
https://datatracker.ietf.org/doc/rfc5905
https://datatracker.ietf.org/doc/html/rfc8915
https://datatracker.ietf.org/doc/rfc8633/
http://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho
https://us-cert.cisa.gov/ncas/alerts/TA14-013A
https://datatracker.ietf.org/doc/draft-ietf-ntp-roughtime/
https://datatracker.ietf.org/doc/draft-ietf-ntp-roughtime-ecosystem/
https://datatracker.ietf.org/doc/draft-ietf-ntp-roughtime-ecosystem/

certificates (i.e., expiration) and signatures (i.e., freshness). Note that these
are a revision and enhancement of the original Google Roughtime. See also the
Cloudflare implementation.

The US Global Positioning System (GPS), originally Navstar GPS, SHOULD
NOT be used as a secure time source by any Uptane ECU, because spoofing
attacks against the unsecured, civilian GPS signals are common, as described
here and here. . #### Changes to the Director repository

If an external time source is in use, a representation of its public key is CONDI-
TIONALLY REQUIRED in Director repository Root metadata.

If an external time source is implemented AND partial verification Secondaries
are used, the following metadata is CONDITIONALLY REQUIRED in the
Director repository’s Targets metadata:

• A representation of the public key(s) for the external time source, similar
to the representation of public keys in Root metadata.

Listing the public key of the external time source in Director Targets metadata
is necessary to allow partial verification Secondaries to perform key rotation.

3.1.1.1 Changes to a Primary If an external time source is implemented,
the Primary SHOULD follow its stipulated procedure for verifying the time.
This procedure occurs after the vehicle version manifest is sent and will fulfill
the Download and check current time step of the Uptane Standard.

If the response of the external time source meets verification criteria, update
the Primary ECU’s clock and retain the time source response for distribution
to Secondary ECUs. If it fails to meet this criteria, discard the response and
continue the procedure without an updated time.

3.1.1.2 ECU version report The ECU version report from each Secondary
may contain a token to be sent to the external time source in whatever manner
the implementer chooses.

3.1.1.3 Changes to all ECUs After the vehicle has been assembled, ECUs
MAY receive an attestation of the current time as downloaded from the external
time source.

As the first step to verifying metadata, described in the Standard for both the
Primary and Secondaries, the ECU SHOULD load and verify the most recent
time from the designated time source by following its designated procedure. This
will likely include verifying that the signatures on the downloaded time are valid

If all steps are completed without error, the ECU SHOULD overwrite its current
attested time with the time it has just downloaded.

8

https://roughtime.googlesource.com/roughtime
https://github.com/cloudflare/roughtime
https://www.euractiv.com/section/defence-and-security/news/russia-responsible-for-massive-satellite-system-spoofing-study-finds/
https://rin.org.uk/blogpost/1706945/332376/What-is-spoofing-and-how-to-ensure-GPS-security
https://uptane.github.io/papers/uptane-standard.2.0.0.html#check_time_primary
https://uptane.github.io/papers/uptane-standard.2.0.0.html#check_time_primary
https://uptane.github.io/papers/uptane-standard.2.0.0.html#verify_time

If any check fails, the ECU SHOULD NOT overwrite its current attested time,
but SHOULD jump to the last step (Create and send version report)to report
the error.

3.1.1.4 Changes to check Root metadata In order to prevent a new
time source from accidentally causing a rollback warning, the clock will be reset
as folllows: check the time source key after updating to the most recent Root
metadata file. If the key is listed in the Root metadata has been rotated, reset
the clock used to set the expiration of metadata to a minimal value (e.g., zero,
or any time that is guaranteed to not be in the future based on other evidence).
It will be updated in the next cycle.

3.1.1.5 Changes to partial verification Secondaries As partial verifica-
tion Secondaries only check the Targets metadata from the Director repository,
the time source keys on these ECUs will be checked when verifying the Targets
metadata. To do this, check the key after verifying the most recent Targets meta-
data file. If the external time source key is listed in the Targets metadata and
has been rotated, reset the clock used to determine the expiration of metadata
to a minimal value as described above.

3.1.1.6 Time source key compromise In the event of a key compromise
for an external time source, an attacker would be able to return a time attestation
that contains an arbitrary time. The attacker could then either:

• Make all metadata appear to be expired. If the returned time is far in the
future, the vehicle would interpret all Uptane metadata as expired. The
vehicle would be unable to verify the metadata, thus creating a denial of
service.

• Make expired metadata appear to be current. If the returned time is in
the past, Uptane metadata that was valid at that point in the past will
seem current to the vehicle, thus allowing for a freeze attack. This cannot
be used for a rollback attack as the ECU will not accept a time earlier
than the time of their previous update.

All of these attacks can be mitigated by rotating any key associated with an
external time in Root metadata, as described in Managing signing keys and
metadata expiration.

9

https://uptane.github.io/uptane-standard/uptane-standard.html#create_version_report
https://uptane.github.io/deployment-considerations/key_management.html
https://uptane.github.io/deployment-considerations/key_management.html

3.2 What suppliers should do

Figure 1. Diagram showing supplier signing arrangements. Suppliers are free
to ask the OEM to sign images on its behalf (supplier A), or can sign them
itself (supplier B). In the latter case, it MAY also delegate some or all of this
responsibility to others (supplier C).

Either the OEM or a tier-1 supplier SHOULD sign for images for any ECUs
produced by that supplier, so unsigned images are never installed. This provides
security against arbitrary software attacks. An OEM will decide whether or
not a tier-1 supplier SHOULD sign its own images. Otherwise, the OEM will
sign images on behalf of the supplier, and the supplier SHOULD only deliver
update images to the OEM as outlined under the [Normal Operating Guidelines]
(https://uptane.github.io/deployment-considerations/normal_operation.html)
section of this document. If the supplier signs its own images, it MUST first set
up roles and metadata using the following steps:

1. Generate a number of offline keys used to sign its metadata. In order to
provide compromise resilience, these keys SHOULD NOT be accessible
from the Image repository. The supplier SHOULD take great care to secure
these keys, so a compromise affects some, but not all, of its ECUs. The
supplier SHOULD use the threshold number of keys chosen by the OEM.

2. Optionally, delegate images to members of its organization (such as its

10

developers), or to tier-2 suppliers (who MAY further delegate to tier-3
suppliers). Delegatees SHOULD recursively follow these same steps.

3. Set an expiration timestamp on its metadata using a duration prescribed
by the OEM.

4. Register its public keys with the OEM using some out-of-band mechanism
(e.g., telephone calls or certified mail).

5. Sign its metadata using the digital signature scheme chosen by the OEM.
6. Send all metadata, including delegations, and associated images to the

OEM.

A tier-1 supplier and its delegatees MAY use the Uptane repository and supplier
tools to produce these signed metadata.

3.3 What the OEM should do
The OEM sets up and configures the Director and Image repositories. To host
these backend services, the OEM MAY use its own private infrastructure, or
cloud computing.

3.3.1 Director repository

Note that all information about setting up signing keys for this repository can
be found in the Managing signing keys and metadata expiration section of this
document.

In order to provide on-demand customization of vehicles, the OEM SHALL also
set up the Director repository following the guidance in the Uptane Standard.
In addition, an OEM must keep in mind the following factors. Unlike the Image
repository, the Director repository:

1. is managed by automated processes
2. uses online keys to sign Targets metadata
3. does not delegate images
4. generally provides different metadata to different Primaries
5. MAY encrypt images per ECU, and
6. produces new metadata on each request from a Primary.

Steps to initialize the repository

In order to initialize the repository, an OEM SHOULD perform the following
steps:

1. Set up the storage mechanism according to the directions for the chosen
protocol. For example, the OEM might need to set up a ZFS filesystem.

2. Set up the transport protocol, following the details of the chosen systems.
For example, the OEM may need to set up an HTTP server with SSL/TLS
enabled.

3. Set up the private and public APIs to interact over the chosen transport
protocol.

11

https://github.com/uptane/uptane
https://github.com/uptane/uptane
https://uptane.github.io/deployment-considerations/key_management.html
https://uptane.github.io/papers/uptane-standard.2.0.0.html#director_repository

4. Set up the Root, Timestamp, Snapshot, and Targets roles.
5. If the Director will be serving per-device encrypted images, copy all relevant

images from the Image repository.
6. Initialize the inventory database with the information necessary for the

Director repository to perform dependency resolution, or encrypt images
per ECU. This information includes: (1) metadata about all available
images for all ECUs on all vehicles, (2) dependencies and conflicts between
images, and (3) ECU keys.

7. Set up and run the automated process that communicates with Primaries.

The automated process MAY use the repository tools from our Reference Imple-
mentation to generate new metadata.

3.3.1.1 Roles

Figure 2. A proposed configuration of roles on the Director repository.

Unlike the Image repository, the Director repository does not delegate images.
Therefore, the Director repository SHOULD contain only the Root, Times-
tamp, Snapshot, and Targets roles, as illustrated in Figure 2. In the following
subsections, we will discuss how metadata for each of these roles is produced.

3.3.1.2 Private API to update images and the inventory database
An OEM SHOULD define a private API for the Director repository that is able
to: (1) upload images, and (2) update the inventory database. This API is
private in the sense that only the OEM should be able to perform these actions.

This API SHOULD require authentication, so that each user is allowed to access
only certain information. The OEM is free to use any authentication method as
long as it is suitably strong. Examples include client certificates, a password,
or an API key encrypted over TLS. For additional security, the OEM may use
multi-factor authentication that utilizes more than one authentication method.

In order to allow automated processes on the Director repository to perform
their respective functions, without also allowing any attackers who might com-

12

https://github.com/uptane/uptane
https://github.com/uptane/uptane
https://docs.microsoft.com/en-us/archive/blogs/kaushal/client-certificates-vs-server-certificates
https://en.wikipedia.org/wiki/Multi-factor_authentication

promise the repository to tamper with the inventory database, it is strongly
RECOMMENDED that these processes should have some boundaries. That is,
the automated processes SHOULD be able to read any record in the database
and write new records, but SHOULD NOT be able to update or delete existing
records.

3.3.1.3 Public API to send updates

Figure 3. How Primaries would interact with the Director repository.

An OEM SHOULD define a public API to the Director repository so that it is
able to send updates to vehicles. This API can be designed to the wishes of the
OEM, and can use either a push or pull model to send updates to Primaries.
The difference between the models lies in whether or not a running vehicle can
be told to immediately download an update (via a push), or can wait until a
pull occurs.

Either way, the OEM can control how often updates are released to vehicles. In
the push model, the OEM can send an update to a vehicle whenever it likes,
as long as the vehicle is online. In the pull model, the OEM can configure the
frequency at which Primaries pull updates. In most realistic cases, there will be

13

little practical difference between the two models.

There is also no significant difference between these methods when it comes to
resistance to denial-of-service (DoS) attacks or flash crowds. In the push model,
a vehicle can control how often updates are pushed to it, so that vehicles can
withstand DoS attacks, even if the repository has been compromised. In the pull
model, the repository can similarly stipulate when vehicles SHOULD download
updates, and how often.

Regardless of what model is used to send updates, as illustrated in Figure 4, the
API SHOULD allow a Primary to: * send a vehicle version manifest (step 1) *
download associated metadata and image files (step 4).

The API MAY require authentication, depending on the OEM’s requirements.

3.3.1.4 Sending an update Sending an update from the Director repository
to a Primary requires the following five steps, as shown in Figure 3.

1. The Primary sends its latest vehicle version manifest to the Director
repository via an automated process.

2. The automated process performs a dependency resolution. It reads asso-
ciated information about this vehicle, such as ECU identifiers and keys,
from the inventory database. It checks that the signatures on the manifest
are correct, and adds the manifest to the inventory database. Then, using
the given manifest, it computes which images SHOULD be installed next
by these ECUs. It SHOULD record the results of this computation on the
inventory database so there is a record of what was chosen for installation.
If there is an error at any point of this step, due to incorrect signatures, or
anything unusual about the set of updates installed on the vehicle, then the
Director repository SHOULD also record it, so the OEM can be alerted to
a potential risk. Repository administrators MAY then take manual steps
to correct the problem, such as instructing the vehicle owner to visit the
nearest dealership.

3. Using the results of the dependency resolution, the automated process
signs fresh Timestamp, Snapshot, and Targets metadata about the images
that SHOULD be installed next by these ECUs. Optionally, if the OEM
requires it, it MAY encrypt images per ECU, and write them to its storage
mechanism. If there are no images to be installed or updated, then the
Targets metadata SHOULD contain an empty set of targets.

4. The Primary downloads the metadata and image files.

Since the automated process is continually producing new metadata files (and,
possibly, encrypted images), these files SHOULD be deleted as soon as Primaries
have consumed them, so that storage space can be reclaimed. This MAY be
done by simply tracking whether Primaries have successfully downloaded these
files within a reasonable amount of time.

14

3.3.2 Image repository

Note that all information about setting up signing keys for this repository can
be found in the Managing signing keys and metadata expiration section of this
document.

Finally, in order to provide compromise resilience, the OEM MUST set up the
Image repository following the guidance in the Uptane Standard. The Image
repository differs from the Director repository in a number of ways. First, it is
managed by human administrators who use offline keys to sign Targets metadata.
It also MAY delegate images to suppliers, and it provides the same metadata to
all Primaries. Lastly, it does not encrypt images per ECU, and it updates its
metadata and images relatively infrequently (e.g., every two weeks or monthly).

Steps to initialize the repository

In order to initialize the repository, an OEM SHOULD perform the following
steps. Note that, as with the Director repository, all users are expected to follow
basic set up instructions, as well as the specific set up instructions mandated by
the users’ choices of storage mechanisms and protocols. 1. Set up the storage
mechanism. 2. Set up the transport protocol. 3. Set up the private and
public APIs to interact over the chosen transport protocol. 4. Set up the Root,
Timestamp, Snapshot, and Targets roles. 5. Sign delegations from the Targets
role to all tier-1 supplier roles. The public keys of tier-1 suppliers SHOULD be
verified using some out-of-band mechanism (e.g., telephone calls or certified mail),
so that the OEM can double-check their authenticity and integrity. 6. Upload
metadata and images from all delegated Targets roles (including tier-1 suppliers).
Verify the metadata and images, and add them to the storage mechanism.

An OEM and its suppliers MAY use the repository and supplier tools from the
Reference Implementation to produce new metadata.

15

https://uptane.github.io/deployment-considerations/key_management.html
https://uptane.github.io/papers/uptane-standard.2.0.0.html#image-repository
https://github.com/uptane/uptane

3.3.2.1 Roles

Figure 4. A proposed configuration of roles on the Image repository.

Using delegations allows the OEM to: (1) control which roles sign for which
images, (2) control precisely which Targets metadata vehicles need to down-
load, and (3) distribute, revoke, and replace public keys used to verify Targets
metadata, and hence, images. In order to set up delegations, an OEM and its
suppliers MAY use the configuration of roles illustrated in Figure 4. There are
two important points.

• The OEM maintains the Root, Timestamp, Snapshot, and Targets roles,
with the Targets role delegating images to their respective tier-1 suppliers.

• There SHOULD be a delegated Targets role for every tier-1 supplier, so
that the OEM can:

– limit the impact of a key compromise.
– precisely control which Targets metadata vehicles need to download.

The metadata for each tier-1 supplier MAY be signed by the OEM (e.g., supplier
A), or the supplier itself (e.g., suppliers B and C). In turn, a tier-1 supplier MAY
delegate images to members of its organization, such as supplier C who has
delegated a subset of its images to one of its developers, or to its tier-2 suppliers
who MAY delegate further to tier-3 suppliers.

Every delegation SHOULD be prefixed with the unique name of a tier-1 supplier,
so that the filenames of images do not conflict with each other. Other than
this constraint, a tier-1 supplier is free to name its images however it likes.

16

For example, it MAY use the convention “supplier-X-ECU-Y-version-Z.img” to
denote an image produced by supplier X, for ECU model Y, and with a version
number Z.

3.3.2.2 Public API to download files An OEM SHOULD define a public
API for Primaries to use when downloading metadata and images to the Image
repository. This API can be defined in whatever manner the OEM wishes.

Depending on the OEM’s requirements, this API MAY require authentication
before Primaries are allowed to download updates. Such a choice affects only
how certain the OEM can be that it is communicating with authentic Primaries,
and not how resilient ECUs are to a repository compromise. The OEM is free
to use any authentication method.

3.3.2.3 Using images from multiple locations Uptane implementations
may sometimes need to accommodate update systems where existing software
comes from several different locations. Implementers may assume that this
would mandate the use of multiple different Image repositories in any equivalent
Uptane implementation. However, this is rarely necessary, and using multiple
Image repositories (implemented via repository mapping metadata as described
in TAP-4) would require a significantly larger effort.

In almost all cases, it is preferable to have a single Image repository containing all
of the Uptane metadata, and redirect clients to download the actual images from
other locations. This can be implemented via an API on the Image repository,
or via a custom field in the Targets metadata directing the clients to one or more
alternate URL where the images are available.

An API solution could be as simple as an HTTP 3xx redirect to the appropriate
download location. More complex schemes, e.g., cases where existing legacy
repositories have a custom authentication scheme, can usually be implemented
by adding custom metadata. See the relevant section of the Standard for more
information on how custom metadata can be added.

3.4 Specifying wireline formats
In setting up an Uptane system, an implementer will need to specify how
information, such as metadata files and vehicle version manifests, should be
encoded. As a guiding principle of the Uptane framework is to give each
implementer as much design flexibility as possible, the Uptane Standard does
not specify particular data binding formats. Instead, OEMs and suppliers can
continue to use the protocols and formats of existing update systems, or they can
select formats that best ensure interoperability with other essential technologies.

To facilitate coordination between implementations, an Uptane adopter can
choose to write a POUF, an added layer to the Standard in which an implementer
can specify choices of Protocols, Operations, Usage and Formats. A POUF

17

https://github.com/theupdateframework/taps/blob/master/tap4.md
https://github.com/theupdateframework/taps/blob/master/tap4.md
https://uptane.github.io/uptane-standard/uptane-standard.html#custom-metadata-about-images

provides an easy way for an implementer to specify the elements that can ensure
interoperability. It can also be customized for the special needs of fleet owners
in a particular industry, such as taxis, car sharing networks, police forces, or the
military.

Information on writing a POUF can be found on the POUF Purpose and
Guidelines page of the Uptane website. A sample POUF, written for the Uptane
Reference Implementation, offers sample metadata written in ASN.1/DER.

3.5 Cost considerations
There is no short answer to the question of what it costs to implement Uptane
because such a decision involves a number of variables, starting with how to plan
an implementation. An OEM with an existing OTA system has two methods
to implement Uptane: either buy an off-the-shelf solution and integrate with
it, or build a custom solution, with some greater or smaller degree of reliance
on available open-source client and server components. If a project is starting
from scratch, there is a third option: Uptane could be integrated from the start,
beginning with the design stage. In that case, the cost of implementing Uptane
itself would be minimal, and may even represent a cost reduction, as it provides a
framework for organizing the analysis and development that must be undertaken
regardless.

If a user is contemplating options one or two, the relative costs are admittedly
more difficult to estimate. When considering off-the-shelf products, an Uptane
solution may be more or less expensive than other OTA solutions, but Uptane
itself may not be the primary cost driver. There is also the possibility that
the goals of the provider and the OEM could be misaligned, which can make
integration difficult and likely expensive. Lastly, there is always a risk profile
associated with outsourcing an OTA system to a third party, as the supplier
could go out of business or decide to phase out the product in the wake of a
shift in corporate priority.

A variant of the custom in-house option may be a safer choice for larger OEMs,
but it can also come with a high price tag and require substantial effort to
integrate. In any case, when upgrading from a legacy solution, a risk assessment
of the current solution and evaluation of the current weaknesses and opportunities
for improvement will be necessary. Uptane provides an organized framework for
this assessment, which could help to reduce costs compared to an assessment
without such a framework. The costs of the upgrade itself are dependent
upon the individual needs, security concerns, and existing infrastructure of the
implementer.

Ultimately, the issue of cost cannot be decided without also estimating the
value received for that expense. Value in this case is enhanced security, so
when discussing costs, the trade-off between taking shortcuts and sacrificing
security, or doing it right and spending more time and money, must be considered.
For example, robust key rotation is one of the most important pillars of TUF

18

https://uptane.github.io/pouf.html
https://uptane.github.io/pouf.html
https://uptane.github.io/reference_pouf.html
https://uptane.github.io/reference_pouf.html
https://github.com/uptane/uptane.github.io/blob/master/reference_pouf.md#file-formats

and Uptane, but it is also something that users may be prepared to ignore if
they think it will save money. Therefore, before thinking about cost, potential
implementers should do a risk assessment of the current solution, evaluate its
weaknesses, and identify the major opportunities for improvement. Only by
knowing the risks they are defending against can implementers legitimately assess
if the cost is an investment in the security of their project and their company,
rather than just another expense eating away at profits.

4 Managing signing keys and metadata expira-
tion

This section addresses both setup and maintenance issues for the signing keys
used by Uptane. These include understanding the function of online vs. offline
keys, the use of signing thresholds to improve security, and the management of
metadata expiration dates.

4.1 Normative references
The secure management of cryptographic key material has been well-documented
in previous studies. Implementers of Uptane SHOULD follow best practices
outlined in IETF RFC 4107 / BCP 107 - Guidelines for Cryptographic Key
Management.

4.2 Repository keys
On both the Director and the Image repository, the OEM maintains the keys to
the Root, Timestamp, Snapshot, and Targets roles. However, for any delegated
Targets roles on the Image repository, the corresponding keys are expected to
be maintained by the supplier to which the corresponding images have been
delegated. For example, if a tier-1 supplier signs its own images, then the supplier
would maintain its own (ideally offline) keys.

4.2.1 Online vs. offline keys

Repository administrators SHOULD use offline keys to sign the Root metadata on
the Director repository, so attackers cannot tamper with this file after a repository
compromise. The Timestamp, Snapshot, and Targets metadata SHOULD be
signed using online keys, so that an automated process can instantly generate
fresh metadata.

On the Image repository, there are two options for signing the Timestamp and
Snapshot metadata, each with the opposite trade-off from the other. In the first
option, the OEM uses online keys, meaning automated processes for renewing the
Timestamp and Snapshot metadata when new Targets metadata and/or images
are available. With this option, fresh metadata can be instantly generated by the
automated process. On the other hand, if attackers compromise a supplier’s key

19

https://tools.ietf.org/html/rfc4107
https://tools.ietf.org/html/bcp107

as well as the Image repository, they could instantly publish malicious images. If
these attackers also compromise the Director repository, then they can execute
arbitrary software attacks by selecting these malicious images on the Image
repository for installation. Such an attack could also facilitate mix-and-match
attacks.

In the second option, the OEM uses offline keys to sign Timestamp and Snapshot
metadata, which reduces the risk of attackers immediately publishing malicious
images. Here again, though, there is a trade-off, in this case related to the
metadata expiration dates. If the Timestamp and Snapshot metadata expire
relatively quickly, then it may be cumbersome to use offline keys to renew their
signatures. Yet, if a longer expiration time is used, it would give a man-in-the-
middle attacker more time to execute freeze attacks, hence defeating the purpose
of the Timestamp role.

For most use cases, the online option may be best, but if stronger security
guarantees are desired, consider using the offline option instead for the Timestamp
and Snapshot roles.

The keys to all other roles (Root, Targets, and all delegations, which includes
suppliers’ keys) on the Image repository SHOULD be kept offline to prevent a
repository compromise from immediately affecting full verification ECUs. It is
also a practical decision as these metadata are infrequently updated. It does
not matter where an offline key is stored (e.g., in a Hardware Security Module,
YubiKey, or a USB stick in a safe deposit box), as long as the key is not accessible
from the repository. Each key SHOULD be kept separate from the others, so
that a compromise of one does not affect them all.

4.2.2 Key thresholds

4.2.2.1 Director repository Since a compromise of the Root role keys
would have the greatest impact on the Director repository, it SHOULD use
a sufficiently large threshold number of keys. This ensures that a single key
compromise does not allow that corrupted key to sign the Root metadata file on
its own. Each key within the threshold MAY belong to a different repository
administrator. For example, if there are 8 administrators, then at least 5 keys
SHOULD be required to sign the Root metadata file, so that a quorum is required
to trust the metadata.

The Timestamp, Snapshot, and Targets roles MAY each use a single key, because
for these roles using more keys does not provide any additional security. As long
as these keys are online, attackers who compromise the repository can use them,
regardless of how many are present.

4.2.2.1.1 Metadata expiration times Since the Root role keys on the
Director repository are not expected to be revoked and replaced often, its
metadata file MAY expire after a relatively long time, such as one year.

20

The Timestamp, Snapshot, and Targets metadata files SHOULD expire relatively
quickly, such as in a day, because they are used to indicate whether updated
images are available.

Table 1 lists an example of expiration times for metadata files on the Director
repository.

Table 1. An example of the duration of time until the metadata for a role
expires.

4.2.2.2 Image repository For the Image repository, each role MAY use as
many keys as is desired, though the greater the impact of key compromise for a
given role, then the greater the number of keys that it SHOULD use. Also, a
threshold number of keys SHOULD be required, so that a single key compromise
is generally insufficient to sign new metadata. To further increase compromise
resilience, each key SHOULD be unique across all roles.

Since the Root role has the highest impact when its keys are compromised, it
SHOULD use a sufficiently large threshold number of keys. Each key MAY
belong to a different repository administrator. For example, if there are 8
administrators, then at least 5 keys SHOULD be required to sign the Root
metadata file, so that a quorum is required to trust the metadata.

Since the Targets role also has a high impact when its keys are compromised, it
SHOULD also use a sufficiently large threshold number of keys. For example, 3
out of 4 keys MAY be required to sign the Targets metadata file.

Since the Timestamp and Snapshot roles have a relatively low impact when its
keys are compromised, each role MAY use a small threshold number of keys. For
example, each role MAY use 1 out of 2 keys to sign its metadata file.

Finally, each delegated Targets role SHOULD use at least 1 out of 2 keys to
sign its metadata file, so that one key is available in case the other is lost. It is
RECOMMENDED that the higher the number of ECUs that can be compromised
if a delegated Targets role is compromised, then the higher the threshold number
of keys that SHOULD be used to sign the role metadata.

21

4.2.2.2.1 Metadata expiration times The Uptane Standard requires all
metadata files to have expiration times in order to prevent or limit freeze attacks.
If ECUs know the time, then attackers cannot indefinitely replay outdated
metadata, and hence, images. In general, the expiration date for a metadata file
depends on how often it is updated. The more frequently it is updated, then
the faster it SHOULD expire, so that man-in-the-middle attackers are unable
to execute freeze attacks for too long. Even if it is not updated frequently, it
SHOULD expire after a bounded period of time, so that stolen or lost keys can
be revoked and replaced.

Since the Root role keys are expected to be revoked and replaced relatively
rarely, its metadata file MAY expire after a relatively long time, such as one
year.

Table 2 lists an example of expiration times for metadata files on the Image
repository.

Table 2. An example number of keys that MAY be used by each role. Each role
uses a threshold of (n, m) keys, where n out of m signatures are required to trust
the signed metadata.

4.3 What to do in case of key compromise
An OEM and its suppliers SHOULD be prepared to handle a key compromise.
If the recommended number and type of keys are used, this should be a rare
event. Nevertheless, when it happens OEMs and suppliers could use the following
recovery procedures.

4.3.1 Director repository

Since the Director repository SHALL keep at least some software signing keys
online, a compromise of this repository can lead to some security threats, such as
mix-and-match attacks. Thus, the OEM SHOULD take great care to protect this
repository and reduce its attack surface as much as possible. This MAY be done,
in part, by using a firewall. However, if the repository has been compromised,
then the following procedure SHOULD be performed in order to recover ECUs
from the compromise. Following the type and placement of keys prescribed for

22

the Director repository, we assume that attackers have compromised the online
keys to the Timestamp, Snapshot, and Targets roles, but not the offline keys to
the Root role.

First, the OEM SHOULD use the Root role to revoke and replace the keys to
the Timestamp, Snapshot, and Targets roles, because only the Root role can
replace these keys.

Second, the OEM SHOULD consider a manual update of all vehicles in order to
replace these keys, particularly if the vehicle has partial verification Secondaries.
This update MAY be done by requiring vehicle owners to visit the nearest
dealership. Although an OEM could replace these keys on a full verification ECU
by using over-the-air broadcasts, a manual update is recommended because: 1.
the OEM SHOULD perform a safety inspection of the vehicles, in case of security
attacks, and 2. partial verification Secondaries are not designed to handle key
revocation and replacement over-the-air. In order to update keys for partial
verification Secondaries, the OEM SHOULD overwrite their copies of the Root
metadata file, perhaps using new images.

After inspecting the vehicle, the OEM SHOULD replace and update metadata
and images on all ECUs to ensure that the images are known to be safe and that
partial verification Secondaries have replaced the keys for the Director repository.

4.3.2 Image repository

If the recommendations for the type and placement of keys described above
for the Image repository are followed, then a key compromise of this repository
should be an unlikely event. However, should one occur, it is a much more serious
affair. A compromise of the Image repository would allow attackers to tamper
with images without being detected, and thus execute arbitrary software attacks.
There are two cases for handling a key compromise, depending on whether the
key is managed by a delegated supplier or by the OEM.

4.3.2.1 Supplier-managed keys In the first case, where a tier-1 supplier or
one of its delegatees has had one or more of its keys compromised, the supplier
and its affected delegatees (if any) SHOULD revoke and replace keys. They
SHOULD update metadata, including delegations and images, and send them to
the OEM.

The OEM SHOULD then manually update only affected vehicles that run
software maintained by this supplier in order to replace metadata and images.
This MAY be done by requiring vehicle owners to visit the nearest dealership. A
manual update SHOULD be done because, without trusted hardware (such as
a TPM), it is difficult to ensure that compromised ECUs can be remotely and
securely updated. After inspecting the vehicle, the OEM SHOULD replace and
update metadata and images on all ECUs so that these images are known to be
safe.

23

4.3.2.2 OEM-managed keys The second case, where the OEM has had
a key compromised, can be far more serious than the first case. An attacker
in such a position may be able to execute attacks on all vehicles, depending
on which keys have been compromised. If the keys are for the Timestamp and
Snapshot roles, or the Targets or Root roles, then the OEM SHOULD use the
following recovery procedure.

First, the OEM SHOULD use the Root role to revoke and replace keys for all
affected roles. Second, it SHOULD restore all metadata and images on the Image
repository to a known good state using an offline backup. Third, the OEM
SHOULD manually update all vehicles in order to replace metadata and images.
A manual update SHOULD be done because, without trusted hardware (such as
a TPM), it is difficult to ensure that compromised ECUs can be remotely and
securely updated.

4.3.2.3 Rotating an Image repository Root key A vehicle will only
check for new Image repository root metadata if the Director targets metadata
indicates that it has at least one updated image to install. However, there could
be situations when it is appropriate to perform a root key rotation even if there
is no new image. One such scenario would be when there is evidence that one or
more keys may have been compromised, making it crucial to get the updated
root metadata to all ECUs as soon as possible. In this case, an update SHOULD
be sent to at least one ECU, even if it is a “dummy” update that just bumps a
version number.

4.3.3 ECU keys

If ECU keys are compromised, then the OEM SHOULD manually update vehicles
to replace these keys. This is the safest course of action because, after a key
compromise, an OEM cannot be sure whether it is remotely replacing keys
controlled by attackers or the intended ECUs.

An OEM MAY use the Director repository and its inventory database to infer
whether ECU keys have been compromised. This database is used to record
vehicle version manifests that list what images an ECU has installed over time.
Therefore, an OEM MAY check for any abnormal patterns of installation that
could have been caused by an ECU key compromise. Note, however, that this
method is not perfect, because if attackers control ECU keys, then they can also
use these keys to send fraudulent ECU version reports.

5 Normal operating procedures
In this section, we discuss how to perform regular maintenance operations. Since
these operations are carried out on a regular basis, it is important to ensure they
are performed in a systematic manner so that software updates are delivered
securely to ECUs.

24

5.1 Updating metadata and images
An OEM SHOULD perform the following steps whenever a new update is
delivered. First, the OEM verifies the authenticity and integrity of new images
delivered by its suppliers. Second, the OEM tests whether the images work as
intended, before releasing them to end-user vehicles.

5.1.1 Receiving updates from tier-1 suppliers

In order to prevent updates from being tampered with by man-in-the-middle
attackers, images SHOULD be delivered from the tier-1 supplier to the OEM in a
manner that supports an extremely high degree of confidence in their timeliness
and authenticity. This may entail any manner of technical, physical, and/or
personnel controls.

An OEM and its suppliers MAY use any transport mechanism to deliver these
files. For example, an OEM MAY maintain a private web portal where metadata
and/or images from suppliers can be uploaded. This private server MAY be
managed by either the OEM or the tier-1 supplier, and SHOULD require
authentication to restrict which users are allowed to read and/or write certain
files. Alternatively, the OEM and its suppliers MAY use email or courier mail.

If the supplier signs its own images, then it delivers all of its metadata, including
delegations, and associated images. Otherwise, if the OEM signs images on
behalf of the supplier, then the supplier needs to update only images, leaving
the OEM responsible for producing signed metadata. Regardless of which party
produces signed metadata, the release counters associated with images SHOULD
be incremented, so that attackers who may compromise the Director repository
can not rollback to obsolete images (see the Enhanced Security Practices section
of this document for more on this attack.)

Regardless of the transport mechanism used to deliver them, the OEM needs to
ensure that the images received are authentic and have not been altered. The
OEM SHOULD double-check the authenticity and integrity of these images by
using some out-of-band mechanism for verification. For example, to obtain a
higher degree of assurance, and for additional validation, the OEM MAY also
require the supplier’s update team to send a PGP/GPG signed email to the
OEM’s security team listing the cryptographic hashes of the new files.

Alternatively, the OEM MAY require that updates be transmitted via a digital
medium that is delivered by a bonded and insured courier. To validate the
provided files, the OEM and a known contact at the supplier MAY have a video
call in which the supplier provides the cryptographic hashes of the metadata
and/or images, and the OEM confirms that the hashes match.

An OEM SHOULD perform this verification even if a trusted transport mecha-
nism is used to ensure the mechanism has not been compromised. If the suppliers
have signed metadata, then the OEM SHOULD verify metadata and images by

25

https://uptane.github.io/deployment-considerations/security_considerations.html

checking version numbers, expiration timestamps, delegations, signatures, and
hashes, so that it can be sure that the metadata matches the images.

5.1.2 Testing metadata and images

After the OEM has somehow verified the authenticity and integrity of new
metadata and images received from the tier-1 supplier, the OEM SHOULD
test both before releasing them to ensure that the images work as intended on
end-user vehicles. To do so, It SHOULD use the following steps.

First, the OEM SHOULD add these metadata and images to the Image repository.
It SHOULD also add information about these images to the inventory database,
including any dependencies and conflicts between images for different ECUs.
Both of these steps are done to make the new metadata and images available to
vehicles.

Optionally, if images are encrypted on demand per ECU, then the OEM SHOULD
ensure that the Director repository has access to the original, unencrypted images,
so that automated processes running the Director repository are able to encrypt
them in the first place. It does not matter how the original, unencrypted
images are stored on the Director repository. For example, they MAY be stored
unencrypted, or they MAY be encrypted using a master key that is known by
the automated processes. See the Preparing an ECU for Uptane section of this
document for more details.

Second, the OEM SHOULD test the updated metadata and images on reserved
vehicles before releasing them to all vehicles in circulation. This step is done
to verify whether these images work as intended. If testing is done, the OEM
MAY instruct the Director repository to first install the updated images on these
reserved vehicles.

Finally, the OEM SHOULD update the inventory database, so that the Director
repository is able to instruct appropriate ECUs on all affected vehicles on how
to install these updated images.

5.2 Backup and garbage collection for the Image repository
The OEM SHOULD regularly perform backup and garbage collection of the
metadata and images on the Image repository. This is done to ensure the OEM
is able to safely recover from a repository compromise, and that the repository
continues to have sufficient storage space. To do so, an OEM MAY use either
the following steps, or its own corporate backup and garbage collection policy.

First, an automated process SHOULD store every file on the Image repository,
as well as its cryptographic hash on a separate, offline system. A copy of the
inventory database from the Director repository SHOULD also be stored on
this offline system. This allows administrators to detect and recover from a
repository compromise.

26

https://uptane.github.io/deployment-considerations/ecus.html

Second, the automated process SHOULD remove expired metadata from the
Image repository to reclaim storage space. If the OEM is interested in supporting
delta updates for vehicles that have not been updated for a long time, then
the automated process SHOULD NOT remove images associated with expired
metadata, because these images MAY be needed in order to compute delta
images. (See the Delta update strategies subsection of the Customizing Uptane
section of this document).

6 Exceptional operations
In this section, we discuss operations that are generally performed only in
exceptional cases. As performing these operations may have security implications
for software updates, they should be carried out with great care.

6.1 Rolling back software
Sometimes an OEM may determine that the latest updates are less reliable
than previous ones. In that case, it may be necessary to roll back to a previous
update.

By default, Uptane does not allow updates to be rolled back and enforces this
action with two mechanisms. First, Uptane rejects any new metadata file with
a version number lower than the one contained in the previous metadata file.
Second, Uptane will reject any new image associated with a release counter that
is lower than the release counter of the previous image in the previous Targets
metadata file. The first mechanism prevents an attacker from replaying an old
metadata file. The second mechanism prevents an attacker who compromises
the Director repository from being able to choose old versions of images, despite
being able to sign new metadata. See Figure 1 for an example.

27

https://uptane.github.io/deployment-considerations/customizations.html#delta-update-strategies

Figure 1. Uptane prevents rollback attacks by rejecting older: (1) metadata
files, and/or (2) images.

There are at least two ways to allow rollbacks, each with different advantages
and disadvantages.

In the first option, an OEM MAY choose to never increment the release counters
of images (see Figure 2). Uptane will accept any new image associated with a
release counter, as long as it is equal to the release counter of the previous image
in the previous Targets metadata file. If release counters are never incremented,
then all images would have the same release counters. In this situation, an
ECU would accept the installation of any compatible image referred to in the
new Targets metadata. (See the Enhanced Security Practices section of this
document for more details.)

28

https://uptane.github.io/deployment-considerations/security_considerations.html

Figure 2. Uptane allows the installation of images that have the same release
counter as what is currently installed.

The advantage to this method is that it is simple. It allows the OEM to easily
install interchangeable versions of the same image. In the example shown in
Figure 2, “foo.img” may simply be a version of “bar.img” containing diagnostic
functions. Therefore, the OEM may install either “bar.img” or “foo.img” on
the same ECU. The disadvantage of this method is that it allows attackers who
compromise the Director repository to install obsolete images they can use to
execute rollback attacks. Therefore, this method SHOULD NOT be used.

In the second option, an OEM increments the release counter of an image
whenever it is critical that an ECU not install images with lower release counters.
In the example in Figure 3, if an ECU installs “foo.img,” then it cannot install
“bar.img.” This is done to prevent the installation of compatible images with
lower release counters that have known security vulnerabilities, rather than newer
images in which these vulnerabilities have been fixed.

29

Figure 3. Uptane forbids the installation of images with lower release counters
than what is currently installed.

The advantage to this method is that it prevents rollback attacks in a situation
where attackers compromise only the Director repository. However, there are
two disadvantages. First, the release counters for images have to be maintained,
even if role B now signs for images previously signed by role A. This is because
release counters are always compared to previous Targets metadata files. Second,
it is more cumbersome to roll back updates, or deliberately cause ECUs to install
older images, because offline keys are used to increment the release counters of
these older images in the new Targets metadata for the Image repository. Yet,
this method SHOULD be preferred, because it is more secure. See the Enhanced
Security Practices section of this document for more techniques that can be used
to limit rollback attacks when the Director repository is compromised.

6.2 Adding, removing, or replacing ECUs
Sometimes it may be necessary for a dealership or mechanic to replace a particular
ECU in a vehicle, or even add or remove one. This will mean that the vehicle
version manifest will change – even if the replacement ECU is an identical model,
it will have a different ECU key. The Director may detect this as an attack, as
an ECU suddenly using a new signing key could indicate a compromise.

We recommend dealing with this use case by establishing an out-of-band process

30

https://uptane.github.io/deployment-considerations/security_considerations.html
https://uptane.github.io/deployment-considerations/security_considerations.html

that allows authorized mechanics to report a change to the OEM. By doing so,
the change in ECU configuration will be recorded in the inventory database.
Exactly what that process will look like depends on the size of the manufacturer,
and the relative frequency of ECU replacements.

• A small luxury automaker might simply choose to allow authorized me-
chanics to send an email or make a phone call to an aftersales support
person with the details of the new ECU, and have that person manually
enter the details.

• A larger automaker might choose to deploy a dealer portal (i.e., a private,
authenticated website) to allow authorized service centers to enter the
details of the new ECU configuration themselves.

Another option for updating the ECU configuration is to have a process that
temporarily “unlocks” an ECU configuration, allowing the vehicle’s Primary to
directly report its new configuration (as opposed to having the mechanic enter
the details of the replaced ECU). There is a tradeoff here. While it streamlines
the repair process, automating this step increases the risk that a real attack
could go unnoticed.

Note, however, that these are only recommendations. Uptane does not prescribe
a protocol for this use case because it is an orthogonal problem to software
update security. The advantage of this approach is that an OEM is free to solve
this problem using existing solutions that it may already have in place.

6.2.1 Aftermarket ECUs

A slightly more difficult use case to deal with concerns the use of aftermar-
ket ECUs – for example, 3rd-party replacement parts, or add-on ECUs that
add functionality for commercial fleet management. Though from a technical
perspective adding an aftermarket ECU can be managed in one of the ways rec-
ommended in the previous subsection, there is no doubt that these components
bring with them a set of unique logistical and security concerns. For starters,
because aftermarket suppliers may not have access to the original design, these
ECUs are often products of reverse engineering. As such, suppliers may not
be able to glean all relevant design information about the ECU, including the
rationale behind certain choices. Furthermore, the use of these components
raises a number of fundamental questions, such as: - If an aftermarket ECU does
not have its own primary, will it still be able to get updates through an existing
OEM primary ECU, as long as the OEMs Director repository permits it? - If an
aftermarket ECU does have its own Primary, is each capable of controlling a
mutually exclusive set of Secondaries? - Could owners (or third parties) direct
updates for their own vehicles from both an OEM and an aftermarket source?

While at this point the easiest alternative might be to simply exclude aftermarket
ECUs from receiving OTA updates, this might not be feasible. For starters,
older vehicles depend heavily on aftermarket parts. Garages (including OEM
dealers) regularly install aftermarket ECUs when an OEM stops producing

31

them. Furthermore, the newly strengthened Massachusetts Right-to-Repair law
complicates both the distribution of ECU firmware updates and the attendant
functional safety and cybersecurity issues. Among other provisions, the law
mandates a platform to permit vehicle owners and independent mechanics to
access telematics. Hence, OEMs may not have a say anymore on whether or not
these units receive OTA updates.

Note that some aftermarket ECUs, such as those designed for fleet management
or monitoring, may have their own independent internet connection, and thus
do not need to be integrated into the OEM’s update system at all.

While at this point Uptane is not ready to include any specific guidance on
aftermarket material use in its Standard, it is an issue the community is closely
monitoring, particularly in the context of pending international standards such
as ISO/SAE 21434.

6.3 Adding or removing a supplier
Due to changes in business relationships, an OEM may need to add or remove a
tier-1 supplier from its repositories.

To add a tier-1 supplier, OEMs SHOULD use the following steps. All three steps
should be performed using the guidelines in the Normal Operating Procedures
section of this document. First, if the supplier signs its own images, then the
OEM SHOULD add a delegation to the supplier on the Image repository. Second,
the supplier SHOULD deliver metadata and/or images to the OEM. Finally, the
OEM SHOULD add the metadata and images to its repositories, possibly test
them, and then release them to the affected vehicles.

To safely remove a tier-1 supplier, the OEM SHOULD use the following steps.
First, it SHOULD delete the corresponding delegation from the Targets role
on the Image repository, as well as all metadata and images belonging to that
supplier, so that their metadata and images are no longer trusted. Second, it
SHOULD also delete information about the supplier from the Director repository,
such as its images, as well as its dependencies and conflicts, so that the Director
repository no longer chooses these images for installation. In order to continue
to update vehicles with ECUs originally maintained by this supplier, the OEM
SHOULD replace this supplier with another delegation, either one maintained
by the OEM, or by another tier-1 supplier.

Note that to comply with the Standard, the Snapshot metadata must continue
to list the removed delegation in order to prevent a rollback attack. However,
if the OEM rotates the Timestamp and Snapshot keys (and pushes new Root
metadata with the new keys), the delegation may be safely removed from the
Snapshot metadata. As the ECU will need to clear out any existing Snapshot
metadata due to the rotation, the check that each Targets metadata filename
listed in the previous Snapshot metadata is also listed in the new Snapshot
metadata will (trivially) not apply.

32

https://en.wikipedia.org/wiki/2020_Massachusetts_Question_1
https://www.iso.org/standard/70918.html
https://uptane.github.io/deployment-considerations/normal_operation.html
https://uptane.github.io/papers/uptane-standard.2.0.0.html#check_snapshot

Tier-1 suppliers are free to manage delegations to members within its own
organizations, or to tier-2 suppliers (who may delegate, in turn, to tier-3 suppliers,
and so on), without involving the OEM.

6.4 Key compromise
See Key Management.

7 Customizing Uptane
In this section, we discuss how OEMs and suppliers may customize Uptane to
meet special requirements.

7.1 Scope of an update
An OEM and its suppliers MAY use an image to arbitrarily update some code
and data on an ECU, but not all. In addition, an image can be used to update
code only, data only, or any other combination of the two elements.

Examples of code updates delivered via an image include the bootloader, shared
libraries, or the application that provides the actual functions of the ECU.
Examples of data updates include setup or initialization data, such as engine
parameters, application data, such as maps, and user data, such as an address
book or system logs.

Figure 1. An example of how code and/or data may constitute an image.

7.2 Delta update strategies
In order to save bandwidth costs, Uptane allows an OEM to deliver updates as
delta images. A delta image update contains only the code and/or data that

33

key_management.html

differs from the image currently installed on the ECU. In order to use delta
images, the OEM SHOULD make the following changes.

The OEM SHOULD add two types of information used by the Director repository
to the custom Targets metadata: (1) the algorithm used to apply a delta image,
and (2) the Targets metadata about the delta image. This is done so that ECUs
know how to apply and verify the delta image. The Director repository SHOULD
also be modified to produce delta images, because Uptane does not require it to
compute deltas by default. The Director repository can use the vehicle version
manifest and dependency resolution to determine the differences between the
previous and latest images. If desired, the Director repository MAY encrypt the
delta image.

As these images are produced on demand by the Director repository, Primaries
SHOULD download all delta and/or encrypted images only from that source.
After full verification of metadata, Primaries SHOULD also check whether delta
images match the Targets metadata from the Director repository in the same
manner in which they would check such metadata when using non-delta images.

Finally, in order to install a delta image, an ECU SHOULD take one of the
actions described in Table 1, depending on whether or not the delta image has
been encrypted, and if the ECU has sufficient additional storage to store a copy
of the image. Note that the OEM MAY use stream ciphers in order to enable
on-the-fly decryption on ECUs that do not have sufficient additional storage.
In this case, the ECU would decrypt the delta image as it is downloaded, then
follow the remainder of the steps in the third box.

34

Table 1. The actions an ECU SHOULD take to install a delta image as
determined by its access to additional storage and whether or not the image is
encrypted

7.2.1 Dynamic delta updates vs. precomputed delta updates

Delta updates can be computed two different ways: dynamically for each ECU
during the installation process (dynamic delta updates), or in advance of instal-

35

lation by precomputing likely possible delta images (precomputed delta updates).
Both types of updates appear below in the subsection on custom installation
instructions.

Dynamic delta updates reduce the amount of data sent in each update, while
allowing for fine-grained control of what version is installed on each ECU. By
using the custom field of the Targets metadata, the Director can be configured
to specify a particular version of software for every ECU. Dynamic delta updates
allow the Director to track resources at file granularity, which can save bandwidth.

A drawback of dynamic delta updates is that, if many ECUs are updating from
the same version, computing the delta of each can result in duplicate computation
that could be time consuming or use up a lot of memory. A possible solution to
this is to use precomputed delta updates.

To send precomputed delta updates, the Director precomputes various probable
diffs and makes these available as images. The Director then specifies which
precomputed image to send to each ECU by using the custom field of Targets
metadata, as described below in the Adding dynamic directions subsection.
Precomputing the delta images has the added advantage of allowing these images
to be stored on the Image repository, which offers additional security against a
Director compromise.

7.3 Uptane in conjunction with other protocols
Implementers MAY use Uptane in conjunction with existing protocols for sending
updates to the vehicle, such as in the following scenarios:

Implementers MAY use TLS to encrypt the connection between Primaries and
the Image and Director repositories, as well as the connection to the source used
to provide the current time.

Implementers MAY use OMA Device Management (OMA-DM) to send Uptane
metadata, images, and other messages to Primaries.

Implementers MAY use Unified Diagnostic Services (UDS) to transport Uptane
metadata, images, and other messages between Primaries and Secondaries.

Any system being used to transport images to ECUs will need to be modified
only to permit transport of Uptane metadata and other messages. Note that
Uptane does not require authentication of network traffic between the Director
and Image repositories and Primaries, or between Primaries and Secondaries.

However, in order for an implementation to be Uptane-compliant, no ECU
can cause another to install an image without performing either full or partial
verification of metadata. This is done in order to prevent attackers from being able
to bypass Uptane and execute arbitrary software attacks. Thus, in an Uptane-
compliant implementation, an ECU performs either full or partial verification of
metadata and images before installing any image, regardless of how the metadata
and images were transmitted to the ECU.

36

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/OMA_Device_Management
https://en.wikipedia.org/wiki/Unified_Diagnostic_Services

7.4 Using Uptane with transport security
In general, Uptane’s security is orthogonal to security systems at other network
layers, such as transport security or data link security. If a security system at
the transport layer is already deployed for other services, or is effectively free to
deploy, there is little reason not to use it. For example, it could be beneficial
to have a common system provide authentication for all services in a vehicle.
For new implementations, there are several reasons to consider use of a security
system at the transport layer in coordination with Uptane.

The most important of these reasons is to insure, as should be true of all
cybersecurity sensitive applications, that Uptane implementations use defense-
in-depth strategies, as defined in NIST Document IR.8183, to ensure that all
vulnerabilities and attack surfaces are protected by multiple and diverse detection
and mitigation defenses. Thus, even though Uptane is designed to retain strong
security guarantees in situations where there is either no transport security or
where the transport security is compromised by an attacker, building on top
of a such a system can augment the application layer image signature/package
signature. There is little downside to such an arrangement as long as the cost
is minimal, especially if the security system can improve detection, mitigation,
or reporting of network disruptions. Another argument for using a transport
security system is that emerging regulations or OTA update standards could
require or recommend that security be provided at the transport layer.

7.5 Multiple Primaries
We expect that the most common deployment configuration of Uptane on vehicles
would feature one Primary per vehicle. However, there could be cases where
having multiple, active Primaries in a vehicle would be useful. One such case
would be providing redundancy if some, but not all, Primaries fail permanently.
The OEM MAY use this setup to design a failover system in which one Primary
takes over when another fails. If so, then the OEM SHOULD take note of the
following considerations in order to prevent safety issues.

It is highly RECOMMENDED that, in any given vehicle, there be a single, active
Primary. This is because using multiple, active Primaries to update Secondaries
can lead to problems in consistency, especially when different Primaries try to
update the same Secondaries. If an implementation is not careful, race conditions
could cause Secondaries to install an inconsistent set of updates, with some
ECUs installing updates from one Primary, while others take their updates from
the second Primary. This can cause ECUs to fail to interoperate.

If multiple Primaries are active in the vehicle at the same time, then each
Primary SHOULD control a mutually exclusive set of Secondaries, so that each
Secondary is controlled only by one Primary.

37

https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8183.pdf

7.6 Atomic installation of a bundle of images
An OEM might wish to require atomic installation of a bundle of images, which
means that if one or more update in the bundle fails, none of them will be
installed. Uptane does not provide a way to guarantee atomic installations
because the problem of atomicity is out of its scope. It is challenging for ECUs
to atomically install a bundle in the face of arbitrary failure. If just one ECU
fails to install its update for any reason, such as a hardware failure, then the
guarantee of atomicity is lost. Furthermore, different OEMs and suppliers already
have established ways of solving this problem. Nevertheless, we discuss several
different solutions for those who require guidance on this technique.

The simplest solution is to use the vehicle version manifest to report any atomic
installation failures to the Director repository, and then not retry installation.
After receiving the report, it is up to the OEM to decide how to respond. For
example, the OEM MAY require the owner of the vehicle to diagnose the failure
at the nearest dealership or authorized mechanic.

Another simple solution is for the Primary and/or Director to retry a bundle
installation until it either succeeds or reaches a set maximum number of retries.
This solution has the advantage of not requiring ECUs to perform a rollback if a
bundle is not fully installed, a step ECUs with limited secondary storage cannot
perform.

If all ECUs do have sufficient additional storage, and can perform a rollback,
then the OEM could use a two-phase commit protocol. We assume that a
gateway ECU would act as the coordinator, which ensures that updates are
installed atomically. This technique should ensure atomic installation as long
as: (1) the gateway ECU behaves correctly and has not been compromised,
and (2) the gateway ECU does not fail permanently. It is considerably less
complicated than Byzantine-fault tolerant protocols, which could have a higher
computation/communication overhead. However, this technique does not provide
other security guarantees. For example, the gateway ECU could show different
bundles to different Secondaries at the same time.

38

https://en.wikipedia.org/wiki/Two-phase_commit_protocol

7.7 2nd-party fleet management

Figure 2. Two options for fleet management with Uptane.

Some parties, such as vehicle rental companies or the military, might wish to
exercise control on how their own fleet of vehicles are updated. Uptane offers
two options for serving these users, as illustrated in Figure 2. Choosing between
them depends on whether the fleet manager wishes to have either complete
control, or better compromise-resilience.

In the first option, which we expect to be the common case, a fleet manager
would configure the mapping metadata on ECUs such that Primaries and full
verification Secondaries would only trust an image that has been signed by both
the OEM-managed Image repository and the fleet-managed Director repository.
Partial verification Secondaries would only trust an image if it has been signed
by the fleet-managed Director repository. The upside of this option is that the
fleet manager, instead of the OEM, has complete control over which updates are
installed on its vehicles. The downside of this option is that if the fleet-managed
Directory repository is compromised, attackers can execute mix-and-match
attacks.

39

In the second option, a fleet manager would configure the mapping metadata on
ECUs such that Primaries and full verification Secondaries would trust an image
that has been signed by three repositories: the OEM-managed Image repository,
the OEM-managed Director repository, and the fleet-managed Director repository.
The upside of this option is that attackers cannot execute mix-and-match attacks
if they have compromised only one of the Director repositories. The downside
of this option is that updates cannot be installed on vehicles unless both the
OEM and fleet agree on which images should be installed. This agreement could
require both Director repositories to communicate using an out-of-band channel.
Using this option also means that partial verification Secondaries should be
configured to trust the Director repository managed by either the OEM or the
fleet, but not both, since these Secondaries might only be able to check for one
signature.

7.8 User-customized updates

Figure 3. An OEM MAY allow a third party to negotiate which updates are
installed.

In its default implementation, Uptane allows only the OEM to fully control
which updates are installed on which ECUs on which vehicles. Thus, there is
no third party input about updates from a dealership, mechanic, fleet manager,
or the end-user. There are very good reasons, such as legal considerations, for
enforcing this constraint. However, sharing this capability exists to the extent
that the OEM wishes to make it available. We discuss two options for doing so.

In the first option, an OEM MAY elect to receive input from a third party as to

40

which updates should be installed. The process is illustrated in Figure 3.

Step 1: The vehicle submits its vehicle version manifest to the Director repository
controlled by the OEM. The manifest lists which updates are currently installed.

Step 2: The Director repository performs dependency resolution using the
manifest, and proposes a set of updates.

Step 3: The third party either agrees with the OEM, or proposes a different set
of updates. This step SHOULD be authenticated (e.g., using client certificates,
or username and password encrypted over TLS), so that only authorized third
parties are allowed to negotiate with the OEM.

Step 4: The OEM either agrees with the third party, or proposes a different set
of updates.

The third and fourth steps MAY be repeated up to a maximum number of retries,
until both the OEM and the third party agree as to which updates should be
installed.

In the second option, the third party MAY choose to override the root of trust for
ECUs, provided that the OEM makes this possible. Specifically, the third party
could overwrite the map and Root metadata file on ECUs, so that updates are
trusted and installed from repositories managed by the third party instead of the
OEM. The OEM could infer whether a vehicle has done so by using its inventory
database to see if the vehicle has recently been updated from its repositories.
The OEM MAY choose to not make this option available to third parties. It
can do so, for example, by using a Hardware Security Module (HSM) to store
Uptane code and data, which prevents third parties from overriding the root of
trust.

7.9 Custom installation instructions for ECUs
Most inputs to ECUs are delivered as signed Targets files, stored on the Image
directory, and then sent to the ECU by the Director. However, there could be
some cases where the inputs required for a particular customization cannot be
configured to follow this standard signing process. Variations in input could be
due to not knowing the input in advance, or a need to customize instructions
for each vehicle. Examples of such inputs could be a command line option that
turns on a feature in certain ECUs, a configuration sent by a Director repository
to an ECU, or a Director doing a dynamic customization for an ECU. We can
collectively call all these non-standard inputs “dynamic directions.” Uptane
allows ECUs to access dynamic directions in two different ways, each having
particular advantages for different use cases.

41

7.9.1 Accessing dynamic directions through signed images from the
Director repository

The first option for providing dynamic directions is to slightly modify the
standard delivery procedure described above. The Director repository would
still send a signed image to the ECU, but this file would not be stored on – or
validated by – the Image repository. As the Image repository is controlled by
offline keys, it cannot validate a file created dynamically by the Director.

Even though the Image repository cannot sign the file, this modification still
provides some security protections. The ECU would continue to have rollback
protection for a file sent this way, as a release counter will still be included in
the metadata and incremented for each new version. If additional validation is
needed, the file could be put on multiple repositories created for this purpose.
These repositories could behave similar to the Director repository, but would all
have separate keys to allow for additional security. The Primary ECU will be
aware of these extra repositories so it can check for consistency by downloading
and comparing the image from all repositories.

7.9.2 Adding dynamic directions to the custom field of Targets meta-
data

Another way to provide dynamic directions is to use the custom field of the
Targets metadata file. This field provides the option to include custom inputs
to individual ECUs. Using the custom field is an especially good option for
managing small variations in the existing image. For example, a compilation flag
to enable a navigation feature might be set on some ECUs, but not on others.
The custom field could contain dynamic directions, and additional subfields
would help determine for which ECUs the direction is intended. In this flag
example, the Director can put the ECU ID and the flag into the custom field so
the flag will be used during the installation process only on that particular ECU.
This custom field can then be included in the Targets metadata received by all
ECUs. The intended ECU would be able to check for this flag and use it during
an installation or update to enable the navigation system.

However, using this method of providing dynamic directions means that a com-
promise of the Director repository might be able to cause ECUs to misconfigure
their images. One way to mitigate this risk would be to require the Image repos-
itory to sign off on exactly the same directions using its own custom Targets
metadata. It should be noted, though, that this is difficult to achieve considering
that such directions are supposed to be dynamic in the first place. Therefore,
proceed, if necessary, with caution.

7.9.3 Picking an option: security tradeoff

In choosing whether to send dynamic directions through the custom field of the
Targets metadata from either the Director or the Image repository, one needs to
consider how security-sensitive the receiving ECU may be.

42

Using the Director repository to encode dynamic directions provides more
flexibility, as directions can be made or changed on demand. However, there
is a significant trade off in terms of security. Should the Directory repository
be compromised, attackers would have this same power. This has important
ramifications for ECUs that perform partial, or even full, verification. On the
other hand, using the Image repository provides the opposite tradeoff. Dynamic
directions are more secure, but offer less flexibility to make changes.

It is important to consider this tradeoff when deciding how to send dynamic
directions. If the ECU is security critical, these directions should be sent using
the custom field of Targets metadata and stored on the Image repository. In any
case, using either repository should not result in significant bandwidth costs for
ECUs, as ECUs that perform partial verification should continue to receive only
directions for itself from the Director repository.

7.10 Location-based updates
Certain types of updates, like maps, rules-of-the-road, or traffic notifications, are
only relevant to vehicles within a specific location. These location-based updates
require that a device be able to report its location in some way. For example, the
device could obtain its location by using a GPS sensor and report it as custom
metadata in the vehicle version manifest using the “geo:” URI scheme defined in
RFC 5870.

Such a system would require a way to reference location for all applicable targets
in the custom section of the Targets metadata for the Image repository. The
Director would then be responsible for identifying which device locations match
those of targets on the Image repository. If a match is found, the Director
SHOULD update its Targets metadata to instruct the relevant devices to install
the location-based updates appropriate for their positions.

It is possible that the vehicle’s position may have changed by the time the vehicle
receives a location-based update. The device MAY check that its current position
matches that of the target before installation, and the implementer MAY decide
to abort the update if the location no longer matches.

7.10.1 Government updates

In certain instances, government agencies and regulatory bodies, such as the U.S.
Department of Transportation, the Department of Homeland Security, or the
Federal Emergency Management Agency (or their state, local, or international
equivalents), may need to download location specific updates directly to vehicles.
A scenario of this type might occur if there are changes to the rules of the
road across a state or country border, or if re-routing needs to occur due to an
emergency condition, such as a flood.

Being able to grant this sort of access would likely require changes in some Uptane
configurations, such as adding Director or Image repositories, or supporting

43

https://tools.ietf.org/html/rfc5870

different key management systems. Prioritizing conflicting updates in such a
system would bring with it a number of questions. For example, if a government
agency has the ability to remotely override functionality of a vehicle, would
these commands be issued by one central server, or would each OEM have to
maintain two Director repositories—one for the company and one for the agency?
If a government body can issue a command for an update, would a driver be
able to pull to the side of the road, or reduce speed to below 25 MPH at a safe
deceleration rate, or would the vehicle come to a stop wherever it might be?

At this point, Uptane is not ready to propose an answer to any of these questions.
As other standards teams (ISO 204 and IEEE 1609) are currently considering
the issue of government updates, we prefer to wait on those decisions, and then
work with automotive community to adapt the existing Standard to meet these
design requirements.

8 Enhanced security practices
Uptane is a flexible system and therefore can be adapted for increased security
if an OEM or supplier deems it necessary. In this section, we discuss several of
these techniques.

8.0.1 Restricting image installation with custom hardware IDs

Before an ECU installs a new image, it SHOULD always check the hardware
type of the image. This can prevent attackers from causing an ECU to install
arbitrary images it was not intended to have. Furthermore, an OEM and/or
its suppliers SHOULD include certain information about images in the Targets
metadata to prevent the installation of these arbitrary images if the Director
repository should be compromised.

Consider the following example in which attackers have compromised the Director
repository. If certain mitigating steps have been taken, such as using release
counters, they cannot rollback software updates. Furthermore, without an
additional key compromise, attackers cannot cause arbitrary software attacks on
Primaries and full verification Secondaries. However, attackers can cause the
ECUs of one hardware type to install images intended for another hardware type.
To use an analogy, this is similar to causing Linksys routers to install images
intended for NetGear routers.

Simply having ECU identifiers (e.g., serial numbers) specified in the Targets
metadata signed by the Director repository does not solve this problem because:
(1) they are used by the Director repository only to instruct which ECU should
install which image, and (2) they are not specified in the Targets metadata
signed on the Image repository because it is impractical to list all ECU identifiers
that pertain to an image.

In order to avoid this problem, the custom Targets metadata about unencrypted

44

https://www.linksys.com/us/
https://www.netgear.com/

images on the Image repository SHOULD always include hardware identifiers.
A hardware identifier allows an OEM and/or its suppliers to succinctly capture
an entire class of ECUs without listing each of their identifiers. Note that the
OEM and/or its suppliers SHOULD ensure that hardware identifiers are unique
across different hardware types of ECUs, so that attackers who compromise the
Director repository cannot cause ECUs of one type to install images intended
for another type.

8.0.2 Integrating software supply chain security into Uptane

As new legislation emerges in the wake of several high profile supply chain
attacks, automakers need to consider implementing more effective end-to-end
security measures for software. Both the UNECE WP.29 regulations that went
into effect in some parts of the world in June 2020, and the ISO/SAE 21434
Standard published in the summer of 2021 require OEMs to ensure that the entire
automotive supply chain is secure. In the United States, Executive Order 14028
observes that “The development of commercial software often lacks transparency,
sufficient focus on the ability of the software to resist attack, and adequate
controls to prevent tampering by malicious actors,” and calls for a concerted
effort to correct this situation.

There are a number of complementary supply chain security technologies that
might be adapted for these purposes. The in-toto framework is a common link
between a number of these efforts. The framework breaks down the software
supply chain into a series of steps, each of which has a “functionary,” human
or otherwise, authorized to perform it. A policy is defined for each supply
chain and it is then cryptographically signed by the supply chain owner. As
each functionary performs its task, it captures separate signed metadata that
documents the artifacts involved. The metadata is then validated against the
policy, ensuring only authorized actions or operations were performed in the
supply chain.

in-toto has already been successfully adopted or integrated into several major
open source software projects, including those hosted by the Cloud Native
Computing Foundation, a part of the Linux Foundation. It has already been
used in tandem with The Update Framework (TUF) to provide both end-to-end
security and compromise resilience for Datadog. Using this integration as a
guide, the Uptane community published Scudo, a whitepaper that describes
how to use in-toto and Uptane together to provide security guarantees for
the development and delivery of automotive software. A Proposed Uptane
Revision and Enhancement (PURE) describing Scudo’s implementation details
was accepted on 2/28/23.

8.0.3 Secure alternatives to conventional software and identifiers

Having an unambiguous way to reference all of its components is a crucial
attribute within any system. Therefore, taking a closer look at a system’s

45

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://in-toto.io/
https://www.datadoghq.com/blog/engineering/secure-publication-of-datadog-agent-integrations-with-tuf-and-in-toto/
https://uptane.github.io/papers/scudo-whitepaper.pdf
https://github.com/uptane/pures
https://github.com/uptane/pures
https://github.com/uptane/pures/blob/main/pure3.md

identifiers—both hardware and software—can be a worthwhile investment in
enhancing system security. A system that lacks a standardized and widely
accepted system of identifying components presents a potential vulnerability
that can impact both the efficiency and reliability of operations. Thus, designers,
suppliers, and OEMs have come to realize that the identifiers used for both
the hardware or software element on a vehicle are not trivial details. Despite
the emergence of alternative ECU and software ID strategies, the utilization of
VIN numbers, often as the only hardware identifier on a vehicle, is still all too
common a practice.

Uptane recognizes the need to adopt stronger identifiers, and future versions of
this document will present strategies for upgrading the security and reliability
of both ECU and software IDs. In both cases, we will consult and comply
with the latest regulations and international standards. For ECU IDs, any
design proposals will likely follow the example presented in the IEEE Standard
802.1AR Device Identity, which specifies “Secure Device Identifiers (DevIDs)
designed to be used as interoperable secure device authentication credentials
with Extensible Authentication Protocol (EAP) and other industry standard
authentication and provisioning protocols.” The document makes the case that
utilizing a standardized device identity makes the authentication of interoperable
secure devices easier, and simplifies secure device deployment and management.

For software ID tags any proposed actions will likely be guided by the Internet
Engineering Task Force’s in-process Standard on Concise Software Identification
Tags. This Standard describes a new type of Software Identification (SWID) tag
that “supports a similar set of semantics and features as SWID tags, as well as
new semantics” that “allow the tags to describe additional types of information,
all in a more memory efficient format.” The “Co” in CoSWID stands for concise,
as it significantly reduces the amount of data transported as compared to a
typical SWID tag. To make this happen, CoSWIDs use the technique of Concise
Binary Object Representation (CBOR), first defined in RFC8949. According to
Wikipedia, CBOR “is a binary data serialization format loosely based on JSON”
that “allows the transmission of data objects that contain name–value pairs, but
in a more concise manner.” Though this increases processing and transfer speeds
at the cost of human readability, the process is designed to automate a task that
previously would require human intervention. Therefore, any trade-off in the
readability of content would be negligible compared to the enhanced security
value.

At this point, Uptane is not planning any imminent change in its Standard to
mandate what qualifies as secure hardware or software identifiers, but we do
strongly suggest adopters consider alternatives beyond just VIN numbers. Given
the growing desirability of automotive systems as targets of hacking, identity is
too important for security to trust to just a part number.

46

https://1.ieee802.org/security/802-1ar/
https://1.ieee802.org/security/802-1ar/
https://datatracker.ietf.org/doc/draft-ietf-sacm-coswid/
https://datatracker.ietf.org/doc/draft-ietf-sacm-coswid/
https://datatracker.ietf.org/doc/html/rfc8949
https://en.wikipedia.org/wiki/CBOR

8.0.4 Preventing rollback attacks in case of Director compromise

In the Exceptional Operations section of this document, we discuss how an OEM
and/or its suppliers SHOULD use release counters in order to prevent rollback
attacks in case of a Director repository compromise. To further limit the impact
of such an attack scenario, the OEM and/or its suppliers SHOULD also use the
following recommendations.

First, they SHOULD diligently remove obsolete images from new versions of
Targets metadata files uploaded to the Image repository. This can prevent
attackers who compromise the Director repository from being able to choose
these obsolete images for installation. This method has a downside in that it
complicates the update process for vehicles that require an intermediate update
step. For example, an ECU has previously installed image A, and C is the latest
image it should install. However, the ECU should install image B before it
installs C, and B has already been removed from the Targets metadata on the
Image repository in order to prevent or limit rollback attacks. Thus, the OEM
and/or its suppliers needs to carefully balance these requirements in making the
decision to remove obsolete images from the Targets metadata.

Second, they SHOULD decrease the expiration timestamps on all Targets meta-
data uploaded to the Image repository so they expire more quickly. This can
prevent attackers who compromise the Director repository from being able to
choose these obsolete images. Unfortunately, Targets metadata that expires
quickly needs to be updated more frequently. This may make it harder to
prevent accidental freeze attacks, as an ECU needs to be able to update both
the time and the metadata from the Image repository. In the event that the
ECU is able to update metadata, but not the time, it can continue working
with the previously installed image, but would be unable to update to the latest
image. The Director repository can detect this unlikely event using the vehicle
version manifest. In this case, the OEM MAY require the owner of the vehicle
to diagnose the problem at the nearest dealership or authorized mechanic.

8.0.5 Broadcasting vs. unicasting metadata inside the vehicle

An implementation of Uptane MAY have a Primary unicast metadata to Secon-
daries. In this scenario, the Primary would send metadata separately to each
Secondary. However, this method is vulnerable to network disruptions and can
cause ECUs to see different versions of metadata released by repositories at
different times.

In order to mitigate this problem, it is RECOMMENDED that a Primary
use a broadcast network, such as CAN, CAN FD, or Ethernet to transmit
metadata to all of its Secondaries at the same time. Note that this still does
not guarantee that ECUs will always see the same versions of metadata at any
time. This is because network traffic between Primaries and Secondaries may
still get disrupted, especially if they are connected through intermediaries, such
as gateways. Nevertheless, it should still be better than unicasting.

47

https://uptane.github.io/deployment-considerations/exceptional_operations.html#rolling-back-software

If an update is intended to be applied to a gateway itself, it should be updated
either before or after (but not during) update operations to ECUs on the other
side of the gateway. This can help to avoid the disruption described above.

8.0.6 Dependencies and conflicts between ECUs

When installing an image on any given ECU, there may be dependencies, or a set
of other images that SHOULD also be installed on other ECUs in order for the
image to work. Likewise, the same image and ECU may have conflicts, or a set
of other images that SHOULD NOT be installed on other ECUs. Dependency
resolution is the process of determining which versions of the latest images and
their dependencies can be installed without conflicts.

8.0.6.1 Checking dependencies and conflicts There are three options
for checking dependencies and conflicts:

1. Only ECUs check dependencies and conflicts. This information
should be included in the Targets metadata on the Image repository,
and should not add substantially to bandwidth costs. The upside is
that, without offline keys, attackers cannot cause ECUs to fail to satisfy
dependencies and prevent conflicts. The downside is that it can add to
computational costs, because dependency resolution is generally an NP-
hard problem. However, it is possible to control the computational costs if
some constraints are imposed.

2. Only the Director repository checks dependencies and conflicts.
This is currently the default on Uptane. The upside is that the computa-
tional costs are pushed to a powerful server. The downside is that attackers
who compromise the Director repository can tamper with dependency res-
olution.

3. Both ECUs and the Director repository check dependencies and
conflicts. To save computational costs, and avoid having each ECU
perform dependency resolutions, only the Primaries and full verification
Secondaries may be required to double-check the dependency resolution
performed by the Director repository. Note that this is not an NP-hard
problem because these ECUs simply need to check that there is no conflict
between the Director and Image repositories. The trade-off is that when
Primaries are compromised, Secondaries have to depend on the Director
repository.

8.0.6.2 Managing dependencies and conflicts Generally speaking, the
Director repository SHOULD NOT issue a new bundle that may conflict with
images listed on the last vehicle version manifest, and therefore known with
complete certainty to have been installed on the vehicle. This is because a partial
bundle installation attack could mean the ECUs have only partly installed any
images sent after the last vehicle version manifest. If the Director repository is

48

https://research.swtch.com/version-sat
https://research.swtch.com/version-sat

not careful in handling this issue, the vehicle may end up installing conflicting
images that will cause ECUs to fail to interoperate.

Figure 1. A series of hypothetical exchanges between a Director repository and
a vehicle.

Consider the series of messages exchanged between a Director repository and a
vehicle in Figure 1.

• In the first bundle of updates, the Director repository instructs ECUs A
and B to install the images A-1.0.img and B-1.0.img, respectively. Later,
the vehicle sends a vehicle version manifest stating that these ECUs have
now installed these images.

• In the second bundle, the Director repository instructs these ECUs to
install the images A-2.0.img and B-2.0.img, respectively. However, for
some unknown reason, the vehicle does not send a new vehicle version
manifest in response.

• In the third bundle of updates, the Director repository instructs these
ECUs to install the images A-3.0.img and B-3.0.img. However, it has

49

not received a new vehicle version manifest from the vehicle stating that
both ECUs have installed the second bundle. Furthermore, the Director
repository knows that B-1.0 and C-3.0 conflict with each other. The only
thing the Director repository can be certain of is that B has installed
either B-1.0 or B-2.0, and C has installed either C-1.0 or C-2.0. Thus, the
Director repository SHOULD NOT send the third bundle to the vehicle,
because B-1.0 from the first bundle may still be installed, which would
conflict with C-3.0 from the third bundle.

• Therefore, the Director repository SHOULD NOT issue the third bundle
until it has received a vehicle version manifest from the vehicle that confirms
that ECUs B and C have installed the second bundle, which is known to
contain images that do not conflict with the third bundle.

• In conclusion, the Director repository SHOULD NOT issue a new bundle
until it has received confirmation via the vehicle version manifest that no
image known to have been installed conflicts with the new images in the
new bundle.

If the Director repository is not able to update a vehicle for any reason, then it
SHOULD raise the issue to the OEM.

8.0.7 ASN.1 decoding

If an OEM chooses to use ASN.1 to encode and decode metadata and other
messages, then it SHOULD take great care in decoding the ASN.1 messages.
Improper decoding of ASN.1 messages may lead to arbitrary code execution
or denial-of-service attacks. For example, see CVE-2016-2108 and attacks on a
well-known ASN.1 compiler.

In order to avoid these problems, whenever possible OEMs and suppliers
SHOULD use ASN.1 decoders that have been comprehensively tested via unit
tests and fuzzing.

Furthermore, following best practices, we recommend that DER encoding is used
instead of BER and CER, because DER provides a unique encoding of values.

8.0.8 Balancing EEPROM performance and security

Many ECUs use EEPROM which, practically speaking, can be written to only
a limited number of times. This in turn can impose limits on how often these
ECUs can be updated.

In order to analyze this problem, let us recap what new information should be
downloaded in every software update cycle:

1. The Primary writes and sends the latest vehicle version manifest to the
Director repository.

2. All ECUs download, verify, and write the latest downloaded time from its
source of current accurate time.

50

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2108
https://arstechnica.com/information-technology/2016/07/software-flaw-puts-mobile-phones-and-networks-at-risk-of-complete-takeover/

3. All ECUs download, verify, and write metadata from the Director and/or
Image repositories.

4. At some point, ECUs download, verify, and write images.
5. At some point, ECUs install new images. Then, they sign, and write the

latest ECU version reports.

Let us make two important observations.

First, it is not necessary to continually refresh the time apart from a software
update cycle. This is because: (1) the time may not be successfully updated, (2)
an ECU SHOULD be able to boot to a valid image, even if its metadata has
expired, and (3) it is necessary to check only that the metadata for the latest
downloaded updates has not expired.

Indeed, there is a risk to implementers updating time information too frequently.
For example, if time information is made once per day, it can cause flash devices
with 10K write lifetime to wear out within roughly 27 years. If valid time
metadata is always written to the same block, an admittedly unlikely scenario
since the old metadata is likely to be retained before the new metadata is
validated, this may cause unacceptable wear. Implementers should seriously
consider both the lifetime usage of their devices and their likely update patterns
if using technologies with limited writes.

However, there is a trade-off between frequently updating the current time (and
thus, exhausting EEPROM), and the efficacy of the system to prevent freeze
attacks from a compromised Director repository. If it is essential to frequently
update the time to prevent freeze attacks, and EEPROM must be used, there
are ways to make that use more efficient. For example, the ECU may write data
to EEPROM in a circular fashion that can expand its lifetime of wear.

Second, it is not necessary for ECUs to write and sign an ECU version report
upon every boot or reboot cycle. At a minimum, an ECU should write and sign
a new ECU version report only upon the successful verification and installation
of a new image.

8.0.9 Balancing security and bandwidth

When deploying any system, it is important to think about the costs involved.
Those can roughly be partitioned into computational, network (bandwidth),
and storage. This subsection gives a rough sense of how those costs may vary
depending upon the deployment scenario employed. The numbers quoted are
not authoritative, but do express order of magnitude costs.

A Primary will end up retrieving and verifying any updated metadata from the
repositories it communicates with, which usually means an Image repository
and a Director repository will be contacted. Whenever an image is added to
the Image repository, a Primary will download a new Targets, Snapshot, and
Timestamp metadata file. The Root file is updated less frequently, but when
this is done, it may also need to be verified. Verifying these repositories and

51

roles entails checking a signature on each of the files. Whenever the vehicle is
requested to install an update, the Primary also receives a new piece of metadata
for the Targets, Snapshot, and Timestamp roles, and on rare occasions, from
the Root file. As noted above, this verification requires a signature check. A
Primary must also compute the secure hash of all images it will serve to ECUs.
The previous known good version of all metadata files must be retained. It is
also wise to retain any images until Secondaries have confirmed installation.

A full verification Secondary is nearly identical in cost to a Primary. The biggest
difference is that it has no need to store, retrieve, or verify an image that it is
not destined to receive. However, other costs are fundamentally the same.

A partial verification Secondary merely retrieves Targets metadata when it
changes, and any images it will install. This requires one signature check and
one secure hash operation per software installation.

Note also that, if used, an external source of time costs are typically for one
signature verification per ECU per time period of update (e.g., daily). This cost
varies based upon the algorithm and thus its measurement can only be estimated
based upon the algorithm.

8.0.10 Using encrypted images on the Image repository

Images stored on the Image repository may have previously been encrypted or
not, at the discretion of the implementer. The Standard does not explicitly
mention using encrypted images on the Image repository because Uptane treats
these blobs exactly the same as unencrypted blobs. It only imposes special
requirements on images that are per-ECU encrypted on the Director repository.
Therefore, there is no reason that encrypted images cannot be on the Image
repository should an implementer wish to use them.

8.0.11 Avoiding Director replay attacks

Uptane doesn’t explicitly require that Targets metadata from the Director contain
any images at all.

As such, it may be tempting to only include software images that need to
be updated in a Director’s Targets metadata, for efficiency and bandwidth-
minimization reasons. Yet, such an action implies that empty Targets metadata
would be sent if no updates are available. Sending empty Targets metadata with
only the required fields presents a potential security threat. As empty metadata
does not include any ECU- or vehicle-specific information, it could potentially
be replayed to another vehicle, creating a “freeze” attack, since the targeted
vehicle would continue to believe it was fully updated. (See uptane-standard
issue #202 for a more detailed discussion.)

There are two straightforward mitigations for this issue:

52

https://github.com/uptane/uptane-standard/issues/202
https://github.com/uptane/uptane-standard/issues/202

• Don’t allow the Director to issue empty Targets metadata. For example,
you could always include the image installed on the Primary ECU. This
mitigation requires no client-side changes.

• Include the targeted VIN number (or some other vehicle identifier) in the
Director Targets metadata. We recommend using a top-level “vin” or
“device_id” field for this purpose. The client should then add a verification
step checking that the VIN matches its own. If there is a mismatch, the
client should abort the update cycle and report an error.

The latter mitigation will likely be included as a requirement in a future release
of the Uptane standard.

9 Frequently asked questions
9.0.1 What makes Uptane different from other SOTA security mech-

anisms?

Security problems can occur due to accidental disclosures, malicious attacks, or
disgruntled insiders. It is not a matter of whether a successful attack will occur,
but when. Because of the very real threat of a compromise, a security system
must be able to securely recover from an attack. This means that an update
system must have a way to restore its operations in a timely fashion when a key
is lost or compromised.

For example, suppose a nation-state actor steals a signing key and wants to use it
to distribute software. Something similar happened in the 2011 DigiNotar case,
widely attributed to the Iranian government, in which 300,000 Iranian Gmail
users were the main targets of a hack against the Dutch company. Following
such an attack, a secure update system must provide a way to revoke the current
trusted information, even if the adversary is able to be a man-in-the-middle for
future communications. Uptane is designed to provide strong security in cases
like these by making sure failures are compartmentalized and limited in scope.

No other automotive-grade update system has been designed to work in such
rigorous situations or has received more public scrutiny than Uptane. We follow
best practices in the security community by opening our design to wide-scale,
public review. This has proven essential time and time again to ensure a design
will hold up against attackers, especially those as strong as nation-state actors.
Furthermore, Uptane’s design is heavily influenced by the design of TUF, a
widely used software update system with a strong track record of usability and
security across millions of devices. As a free and open standard, with no cost to
use or adopt, Uptane stands alone in the automotive update space.

9.0.2 How does Uptane work with other systems and protocols?

Other mechanisms for performing updates, such as those offered by Red Bend,
Movimento, and Tesla, are compatible with Uptane solely for handling data

53

https://en.wikipedia.org/wiki/DigiNotar
https://theupdateframework.io/

transport. Uptane can use any transport mechanism, and still provide strong
security guarantees, even if the underlying network or transport mechanism
is compromised. If a manufacturer wants to move to a secure update system,
keeping their existing system as a transport mechanism for Uptane is an effective
way to do so. See the Customizing Uptane section of this document.

9.0.3 What are the cost implications of integrating Uptane?

A number of factors can influence the costs involved with implementing Uptane.
If a project is starting from scratch, the cost would be minimal and any money
spent would be just one component of the initial design. For existing OTA
systems, the choice will be to either buy an off-the-shelf solution and do an
integration, or to build a custom solution, with some greater or smaller degree
of reliance on available open-source client and server components. There are
pros and cons to both options, but ultimately, the issue of cost cannot be
determined without also considering the value received for the expense. Value in
this case is enhanced security, so when discussing costs, the trade-off between
taking shortcuts and sacrificing security, or doing it right and spending more
time/money, must be considered. A more detailed discussion on this issue can
be found in the Setting up Uptane repositories section.

9.0.4 Must all signatures be valid for a threshold of signatures to be
valid?

The threshold requirement of Uptane, mentioned in Section 5.4.4.3 and in
descriptions of other roles, stipulates that a set number of keys are required to
sign a metadata file. This is designed to prevent attacks by requiring would-be
hackers to compromise multiple keys in order to install malware. However, what
happens if this threshold is met, but one or more of the keys is not valid?

The Uptane Standard allows each implementer to decide whether these keys
would be accepted. Take the following example:

Root metadata lists valid top-level Targets key identifiers are A, B, C, and D,
with a threshold of 2. Should the following two metadata files be considered
valid?

• Signed by A, B, and X, where X is not present at all in Root metadata

• Signed by A, B, and C, but B’s signature doesn’t actually match the signed
content

The first case can happen when you include X in a newer version of Root
metadata (for example the next iteration), so this has to be handled correctly
or it will complicate the process of adding and rotating keys. The second case
could happen when you are changing or adding signing algorithms. This case
can occur if B is using a new signing scheme that the client currently does not
understand, but will know how to parse after the update.

54

https://uptane.github.io/deployment-considerations/customizations.html
http:/uptane.github.io/deployment-considerations/repositories.html
https://uptane.github.io/uptane-standard/uptane-standard.html#check_root

Both the Uptane Standard and the Reference Implementation consider both of
these cases valid, and the implementation also includes unit tests to verify this
behavior.

We would welcome input from the community as to whether a case can be made
for specifying one option over another.

10 Changelog
All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic
Versioning.

10.1 [Unreleased]
10.2 [2.1.0] - 2023-06-6
V.2.1.0 is a minor release containing no breaking changes. The changes it includes,
which are detailed below, are largely wording clarifications. The most significant
addition is referencing the Scudo option as an augmentation for software supply
chain security in automobiles.

10.2.1 Added

• A clearer definition of the term “conformant” as it applies to Uptane.
• A security policy that outlines how errata can be reported and how reports

will be addressed.
• A file stating that the Uptane Standard and Deployment Best Practices is

licensed under Apache.
• A mention of Scudo as an Uptane augmentation in the “Out of Scope”

text in the Standard as a clarification of Uptane’s involvement in software
supply chain security.
Changed

• The term “Uptane-compliant” to “Uptane-conformant” to clarify that the
framework is a standard to follow rather than a regulation that must be
adhered to.

• Metadata distribution requirements for secondaries to allow more flexibility
when there are no new downloads for a given ECU.

• Relaxed the requirement that verification of Targets metadata be considered
complete if the Directory repository indicates that there are no new targets.

• Relaxed the requirement that the Director repository SHALL check the
time sent in the ECU report to a SHOULD.

55

https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html
https://semver.org/spec/v2.0.0.html

10.2.2 Removed

• All mentions of the Reference Implementation, which has now been clearly
marked as obsolete.

• The term “private key” to reduce confusion about the role of these keys.
• Removed redundant and unclear wording from the description of the Root

role in Section 5.1.1.

10.3 [2.0.0] - 2022-01-18
As the first major release since 1.0.0 was issued on July 31, 2019, the new version
contains several breaking changes that could affect backwards compatibility.
However, several of these changes also provide greater flexibility for the imple-
menter. Probably the most significant change was removing references to the
Uptane Time Server, to clarify that users can make their own decisions about
secure sources of time, as long as it is reliable. On the whole, V.2.0.0 should
make implementation on legacy systems easier rather than more complex.

10.3.1 Added

• The actual RFC 2119 definitions to the Standard, and a statement of
caution about the use of imperatives in that document. The definitions to
terms MUST and MUST NOT are excluded in keeping with the decision
to only use the terms SHALL or SHALL NOT when referring to actions
in the Standard that mandate compliance.

• A note restricting the use of imperatives to instances where they are actually
required for interoperation or to limit behavior which has potential for
causing harm.

• A qualifying note distinguishing between signing keys and secret keys used
to decrypt images. The former are required to be unique to the ECU to
avoid replay attacks, but the latter need not be unique.

• A recommendation that filenames of images SHOULD be encoded to
prevent a path traversal on the client system, either by using URL encoding
or by limiting the allowed character set in the filename.

10.3.2 Changed

• Policy on when changes to the Standard become “official” by adding the
following statement to the Standard repository, “As the Standard is a
living document, updates are made in real time as needed. However, these
changes will not be considered formally adopted until the release of the
next minor or major version.”

• The wording used to refer to actions in the Standard that require compliance
from a mix of SHALL and MUST to just SHALL. Previously, the two
words were used interchangeably in the document. However, in other

56

contexts, there are subtle differences in the meaning of these words. By
consistently using just SHALL, it reduces any possible confusion.

• The stipulation in Section 5.4 that ECUs monitor the download speed
of image metadata and image binaries to detect and respond to a slow
retrieval attack from a SHOULD to a SHALL.

• The stipulation in Section 5.4.3.4 that ECUs check that the length of the
image matches the length listed in the metadata from a SHOULD to a
SHALL.

• The description of the relationship between Primaries and Secondaries if a
vehicle has multiple Primaries. It is now described this way: “If multiple
such Primaries are included within a vehicle, each Primary SHOULD have
a designated set of Secondaries.”

• The stipulation in Section 5.2.3.1 that a vehicle identifier be used in a
situation where Targets metadata from the Director repository include no
images from a SHOULD to a SHALL. The stronger compliance word is
needed to prevent replay attacks.

10.3.3 Removed

• All references to the Uptane Time Server. While having a secure source of
time is still mandated as a requirement for compliance, we are no longer
recommending the Uptane Time Server as that source. Several other
time source options are discussed in the “Setting up Uptane Repositories”
section of Deployment Best Practices.

10.4 [1.2.0] - 2021-07-16
As this is the second minor release issued in 2021, the short list of changes made
to the Uptane Standard between January 8 and July 2 of this year were primarily
wordsmithing corrections to improve clarity.

10.4.1 Added

• A “SHOULD” requirement to the Standard that recommends including
vehicle identifiers to targets metadata in order to avoid replay attacks.
The sentence “Targets metadata from the Director repository SHOULD
include a vehicle identifier if there are no images included in the targets
metadata” was added to Section 5.2.3.1.

• The word “unique” wherever the Standard mentions key thresholds. This
is to clarify that multiple signatures from the same key do not count as a
threshold.

57

https://uptane.github.io/deployment-considerations/repositories.html
https://uptane.github.io/deployment-considerations/repositories.html

10.4.2 Changed

• The location of the “Terminology” section. All definitions have been moved
to the Glossary section of the Deployment Best Practices document.

10.4.3 Removed

• The use of the phrase “secondary storage,” because this usage was very
unclear. Instead, the Standard now refers to secondaries with “limited
storage to receive an image.”

10.5 [1.1.0] - 2021-01-08
The changes made to the Uptane Standard since its initial release on July 31,
2019, have principally addressed issues of style, clarity, and the resolution of
inconsistencies. As a result, the majority of text edits and additions seek to
correct wording in the original text that could potentially be misleading.

10.5.1 Added

• A style guide to impose consistency in spelling, capitalization of roles and
repository names, and use of punctuation.

• A policy for how to link to the Standard or any specific portion of it. Any
links to the Standard from other documents should point to the latest
released version, and should link by section name, not number, as the
numbers tend to change more than the names.

• A document archive policy to add a stable copy of each version of the
Standard to the repository, starting with the initial IEEE/ISTO V.1.0.0
document.

• A new entry to the list of what is “Out of scope” for the Standard:
“Compromise of the packaged software, such as malware embedded in a
trusted package.”

• The option to use a counter (instead of a nonce) in the ECU Version
Report, and the purpose of the nonce in the step-by-step instructions for
preparing this report.

• A clarification that metadata is required at manufacturing time, and a
rationale for why preinstalled metadata is needed. This step enables an
ECU to authenticate that a remote repository is legitimate when it first
downloads metadata in the field, which can serve as a defense against
rollback attacks.

• A clarification that there is no need to download all metadata from the
Image repo if the Director indicates there are no new updates to install.

58

• A clarification about the manner in which we identify images by their hash.
It specifies that if the Primary has received multiple hashes for a given
image binary via the Targets role, then it SHALL verify every hash for
this image. This step is to be performed even if the image is identified by
a single hash as part of its filename.

• A clarification that full verification MUST be performed by Primary ECUs
and MAY be performed by Secondary ECUs.

• A missing reference to the Standard pointing to the Time Server description
in Uptane Deployment Best Practices.

10.5.2 Changed

• The name of our deployment considerations document. It is now Uptane
Deployment Best Practices to better reflect naming conventions within the
community.

• The way steps are referenced in the ECU process for verifying the latest
downloaded metadata.

• Several numbering references in the full verification process, and “Step 0”
in the procedure for checking Root metadata.

• Moved a Targets metadata check for unrecognized ECU IDs to a more
logical place in the series of checks.

• Resolved an inconsistency in how checking hashes of images is discussed.

• Aligned naming of example hashes with NIST policy on hash functions.
This change was also made to demonstrate that Uptane is not tied to any
particular set of algorithms.

• Specified that the ECU SHOULD check that the length of the image
matches the length listed in the metadata in the procedure for checking
hashes.

• Modified wording to make verifying a time message optional if the ECU
does not have the capacity to do so.

• Replaced phrases that were incorrect, or could be mistaken for another
object or function. These included the phrases target metadata, image
metadata, ECU version manifest, and Uptane Standards (plural, instead
of singular).

• Corrected additional capitalization and punctuation usages for consistency,
including imposing the consistent use of the Oxford comma in a series of
items within a sentence, and placing a comma after e.g. and i.e.

• Corrected other stylistic/formatting issues that interfered with clarity, such
as extraneous commas and use of whitespace.

59

https://csrc.nist.gov/projects/hash-functions/nist-policy-on-hash-functions

• Replaced phrases that were incorrect, or could be mistaken for another
object or function. These included the phrases target metadata, image
metadata, ECU version manifest, and Uptane Standards (plural, instead
of singular).

• Switched a MAY to a SHOULD in the statement “Full verification MUST
be performed by Primary ECUs and SHOULD be performed by Secondary
ECUs,” to be consistent with references elsewhere in the Standard.

• Credited the document’s authorship to the Uptane Community, and
changed the organization name from the Uptane Alliance to Joint De-
velopment Foundation Projects, LLC, Uptane Series.

10.5.3 Removed

• Removed words from the opening definition section that are not used in
the Standard.

• Removed references to TAP 5 in three places in the Standard. TAP 5 has
been more or less replaced by TAP 13, but the latter has not yet been
approved.

60

	Introduction
	Preparing an ECU for Uptane
	ECU implementation choices
	Full vs. partial verification
	Symmetric vs. asymmetric ECU keys
	Encryption of images on ECUs

	ECUs without filesystems
	ECUs without sufficient storage

	Setting up Uptane repositories
	Secure source of time
	External sources of time

	What suppliers should do
	What the OEM should do
	Director repository
	Image repository

	Specifying wireline formats
	Cost considerations

	Managing signing keys and metadata expiration
	Normative references
	Repository keys
	Online vs. offline keys
	Key thresholds

	What to do in case of key compromise
	Director repository
	Image repository
	ECU keys

	Normal operating procedures
	Updating metadata and images
	Receiving updates from tier-1 suppliers
	Testing metadata and images

	Backup and garbage collection for the Image repository

	Exceptional operations
	Rolling back software
	Adding, removing, or replacing ECUs
	Aftermarket ECUs

	Adding or removing a supplier
	Key compromise

	Customizing Uptane
	Scope of an update
	Delta update strategies
	Dynamic delta updates vs. precomputed delta updates

	Uptane in conjunction with other protocols
	Using Uptane with transport security
	Multiple Primaries
	Atomic installation of a bundle of images
	2nd-party fleet management
	User-customized updates
	Custom installation instructions for ECUs
	Accessing dynamic directions through signed images from the Director repository
	Adding dynamic directions to the custom field of Targets metadata
	Picking an option: security tradeoff

	Location-based updates
	Government updates

	Enhanced security practices
	Restricting image installation with custom hardware IDs
	Integrating software supply chain security into Uptane
	Secure alternatives to conventional software and identifiers
	Preventing rollback attacks in case of Director compromise
	Broadcasting vs. unicasting metadata inside the vehicle
	Dependencies and conflicts between ECUs
	ASN.1 decoding
	Balancing EEPROM performance and security
	Balancing security and bandwidth
	Using encrypted images on the Image repository
	Avoiding Director replay attacks

	Frequently asked questions
	What makes Uptane different from other SOTA security mechanisms?
	How does Uptane work with other systems and protocols?
	What are the cost implications of integrating Uptane?
	Must all signatures be valid for a threshold of signatures to be valid?

	Changelog
	[Unreleased]
	[2.1.0] - 2023-06-6
	Added
	Removed

	[2.0.0] - 2022-01-18
	Added
	Changed
	Removed

	[1.2.0] - 2021-07-16
	Added
	Changed
	Removed

	[1.1.0] - 2021-01-08
	Added
	Changed
	Removed

