
Scudo: A Proposal for Resolving

Software Supply Chain Insecurities

in Vehicles

The second in a series of whitepapers on

emerging and critical issues in automotive cybersecurity

Published by the Uptane Standards Group

Updated in July 2022

Released in May 2022

Marina Moore, Aditya Sirish A Yelgundhalli, Trishank Karthik Kuppusamy,

Santiago Torres-Arias, Lois Anne DeLong, Justin Cappos



Table of Contents

• Executive Summary
• Introduction
• Challenges to Securing Software Supply Chains for Vehicles

– Size and Diversity of Code Bases in Vehicles
– Not All ECUs are Created Equal

• Threat Model for Defending Automotive ECUs Against Software Supply
Chain Risks

• Current Options for Software Supply Chain Security
– Software Bills of Materials
– Sigstore
– Grafeas / Kritis
– in-toto

• Scudo: A Proposal for Infusing Software Supply Chain Security into
Automobiles

• Meeting Emerging Regulations and Industry Best Practices
– U.S. Executive Order 14028
– UNECE WP29 R155
– UNECE WP29 R156
– ISO/SAE 21434
– ISO DIS 24089
– SLSA

• Conclusions and Future Work
• References
• Change History

Executive Summary

In the light of the 2020 SolarWinds attack and the identification of potential
supply chain vulnerabilities ripe for exploitation, such as log4j, companies
across all industry sectors have turned their attention to software supply chain
security. The need to find solutions quickly is further fueled by rapidly increasing
regulations and standards, including President Biden’s U.S.Executive Order
14028. Issued in the spring of 2021, it explicitly calls for improvements in the
development, testing, and distribution of software.

The automotive industry has not been immune to the types of attacks described
above. A 2020 article in Forbes acknowledges that “nearly every (automotive)
manufacturer has been hacked.” Several of the incidents mentioned in the article
targeted the software running on vehicles that could be used to carry out software
supply chain attacks. These would impact significantly more automobiles than
targeted attacks on specific vehicles. Therefore, the industry must acknowledge
the need for reliable and resilient security measures across all the stages of
software development, building, and deployment.

There are a number of open source strategies for securing software supply chains

1

https://news.yahoo.com/log4j-why-this-massive-security-flaw-impacting-nearly-all-the-internet-222332341.html
https://www.forbes.com/sites/stevetengler/2020/06/30/top-25-auto-cybersecurity-hacks-too-many-glass-houses-to-be-throwing-stones/?sh=8a10f2d7f65d


that could possibly be adapted for use on vehicles. As the problem has grown
in significance, the developers of these solutions have collaborated to ensure
proposed systems can interoperate. Therefore, the optimum solution will likely
involve a layered approach in which combined strategies are used.

In this paper, we propose one such solution, Scudo. Scudo combines the com-
promise resilience and secure delivery protection of the Uptane software update
system, with the end-to-end supply chain security offered by in-toto. Uptane has
been a component in secure software update systems used by a number of OEMs
for the past five years. On the other hand, in-toto is new to the automotive
space but has seen significant adoptions by companies such as Datadog in 2018,
as well as by open source efforts such as Sigstore, Grafeas, and Reproducible
Builds. SolarWinds itself adopted in-toto as part of its recovery from the attack
in 2019-20. in-toto is also a core part of SLSA, the industry’s leading software
supply chain best practices framework.

This whitepaper introduces Scudo on a high level. A more formal specification
will be published as a Proposed Uptane Revisions and Enhancements (PURE).
The PURE, which is a formal mechanism for proposing changes to the Uptane
Standard, will also consider the unique needs of the automotive industry with
respect to the challenges these needs may pose to validating software supply
chains. It will also present example scenarios using existing, mature in-toto
implementations to help OEMs bootstrap the framework for their supply chains.

Introduction

For many years supply chain security appears to have been something of a
second-tier priority for both software developers and the companies that rely
upon their product. It was more common to focus attention on what happens
after the software is built, through code reviews, penetration testing, and the
development and implementation of patches and updates. This type of approach
overlooks the very real possibility that, even with all the efforts mentioned above,
end users still have no guarantee they are actually installing the application
originally conceived as a code base. Over time, this somewhat myopic vision
has given malicious actors multiple opportunities to insert malware or damage
images. But, recent events have rapidly forced the industry to take a wider
perspective on how software security is defined.

To start with, software supply chain attacks are on the rise. According to the
2021 State of the Software Supply Chain report, such attacks increased by 650%
in 2021. But, the incident that really made both the government and corporate
CISOs pay attention was the 2020 Sunburst attack, that affected more than
100 companies and 9 government agencies. Launched via malware in the Orion
software produced by SolarWinds, the attack taught both public and private
concerns some hard lessons, such as:

• As software products contain third-party components, program developers
are not in complete control of the contents of their products.

2

https://www.datadoghq.com/blog/engineering/secure-publication-of-datadog-agent-integrations-with-tuf-and-in-toto/
https://github.com/uptane/pures/blob/main/pure1.md
https://www.sonatype.com/hubfs/SSSC-Report-2021_0913_PM_2.pdf
https://medium.com/the-framework-by-tangram-flex/what-is-software-security-e03a5ee7a6b5
https://medium.com/the-framework-by-tangram-flex/what-is-software-security-e03a5ee7a6b5
https://www.sonatype.com/hubfs/SSSC-Report-2021_0913_PM_2.pdf
https://www.cynet.com/attack-techniques-hands-on/sunburst-backdoor-c2-communication-protocol/


• A compromise anywhere in the supply chain, from the source code to
installation by the end user, can introduce vulnerabilities into software.

• The very thing designed to protect the security of software—patches and
updates that routinely fix vulnerabilities—can also be used to deliver
malware that can damage and corrupt.

• Malware can linger undetected for extended periods of time, allowing it to
infect every system that touches it. The Sunburst malicious code was part
of an update released by SolarWinds in the spring of 2020, yet it was not
reported until December of that year.

If there is any upside to Sunburst, it is that no one is ignoring supply chain issues
anymore. In the spring of 2021, President Joseph R. Biden issued a number of
Executive Orders related to supply chains in the wake of this and other hacks.
One of these executive orders, #14028, specifically targets the development,
testing, and distribution of software. This represents a positive step forward and
any actions resulting from these orders should reduce the risk to the software
supply chain.

Any recommended actions, however, particularly anything mandated by the
Federal government, should carefully consider the diverse industries such rules
will affect. Solutions must work in a variety of contexts, including the increas-
ingly vulnerable attack surface of automotive electronic control units or ECUs.
Securing the supply chain for software updates on vehicles presents a particular
challenge for several reasons. First off, an automobile has, on average, some
30,000 individual components, which can be sourced from perhaps hundreds of
individual suppliers, and controlled within the vehicle by as many as 150 distinct
electronic computing units (ECUs). Thus, it can be viewed as an extreme
example of the risks inherent in the use of third-party software components
mentioned above. The ECUs in cars are particularly diverse in suppliers, with
one auto executive admitting in 2020 that only 10% of the software in its vehicles
is developed in-house. With so many outside developers committing to the code
base of a car, it is difficult to impose a consistent software supply chain protection
strategy from company to company, or even from model to model. Similarly, the
proprietary orientation of the auto industry presents another challenge. How
can one protect a software supply chain without knowing the exact nature of
the units you are protecting?

In this whitepaper, we take a closer look at a few approaches available today to
address software supply chain insecurities, as well as the qualities any proposed
strategy would need to meet to secure updates on the computing units in vehicles.
We then propose a strategy called Scudo, an Italian word for shield. Scudo begins
with Uptane, an open and secure software update system design that protects
software delivered over-the-air to automobiles, and adds supply chain protection
using in-toto. The latter is a proven technology that secures the integrity of
software supply chains by making it transparent to the user what steps were
performed, by whom, and in what order. in-toto has been adopted or integrated
into several major open source software projects, including those hosted by the

3

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://knowhow.napaonline.com/how-many-parts-are-in-a-car/
https://www.eenewsautomotive.com/en/number-of-automotive-ecus-continues-to-rise/
https://www.eenewsautomotive.com/en/number-of-automotive-ecus-continues-to-rise/
https://spectrum.ieee.org/software-eating-car
https://uptane.github.io/
https://uptane.github.io/papers/kuppusamy_escar_16.pdf
https://in-toto.io/


Cloud Native Computing Foundation (CNCF) and the Open Source Security
Foundation (OpenSSF), both part of the Linux Foundation. in-toto has been
implemented in different languages like Python, Golang, Java, and Rust, and
is part of crucial security projects, such as Reproducible Builds and Sigstore.
The project has been adopted in production by Datadog, which has used it to
secure its pipelines since 2019. SolarWinds adopted in-toto and redesigned their
build pipelines after the SUNBURST attack came to light. in-toto also has
integrations and support in various other open source projects, such as Grafeas,
Kubesec, and rebuilderd.

By combining the transparency and accountability of in-toto with the compro-
mise resilience and other security features of Uptane, Scudo can better equip
automobiles to defend against the increasing likelihood of a hack. Consider that
in March of 2022, Toyota was forced to shut down 28 assembly lines at 14 plants
in Japan for a full day when one of its suppliers found a server had been infected
by a virus. Shutting down for one day affected the output of around 13,000
vehicles. For suppliers that provide OTA updates, a server compromise such
as this would instead mean compromised software making its way into vehicles
already on the road.

We support our proposal that Scudo can provide the necessary supply chain
support for automobiles by sharing a case study of a successful integration of
in-toto into The Update Framework (TUF), Uptane’s parent project. We then
discuss what modifications might be needed for this TUF/in-toto model, also
referred to as the in-toto Enhancement (ITE) 2 model, to work with Uptane.
Lastly, we briefly address how Scudo can meet the actions called for in the
Executive Orders referenced above, as well as in international regulations such as
UNECE WP29 R155, standards like ISO/SAE 21434 Road Vehicle Cybersecurity,
and industry best practices like SLSA.

Challenges to Securing Software Supply Chains for Vehicles

The need for software supply chain security in the automotive industry could
not be clearer. Not only are standards and government mandates pushing things
forward, but so are the attacks themselves. A 2020 article in Forbes acknowledges
that “nearly every (automotive) manufacturer has been hacked” in some manner.
While the industry should work harder to prevent these hacks, reality suggests
the attacks will come, and so securing the software supply chain means making
all servers in a piece of software’s lifecycle resilient to attacks. The same article
quotes an anonymous source from the industry as saying “at some point a brand
will experience a massive hack, and when they go bankrupt, that will be the
true wake-up call.” The prodding of new legislation and standards will hopefully
spur the needed action before this harsh scenario plays out. Nevertheless, no
matter what happens, with compromise resilient technologies, companies can
recover after attacks and ensure that vehicles on the road remain secure without
relying on expensive recalls.

4

https://cncf.io/
https://openssf.org/
https://openssf.org/
https://linuxfoundation.org/
https://reproducible-builds.org/
https://www.sigstore.dev/
https://www.datadoghq.com/
https://static.sched.com/hosted_files/supplychainsecurityconna21/df/SupplyChainCon-TrevorRosen-Keynote.pdf
https://grafeas.io
https://kubesec.io/
https://rebuilderd.com
https://ssl.engineering.nyu.edu/papers/torres-toto-usenix19.pdf
https://www.reuters.com/markets/stocks/toyota-shares-fall-after-domestic-factory-suspension-2022-03-01/
https://www.forbes.com/sites/stevetengler/2020/06/30/top-25-auto-cybersecurity-hacks-too-many-glass-houses-to-be-throwing-stones/?sh=8a10f2d7f65d


But, as alluded to earlier, achieving a successful supply chain security strategy
for the auto industry will likely require some alteration in practices. Concerns
about the protection of intellectual property in this business arena tends to
limit sharing of best practices, a crucial step in achieving a secure standard. In
addition, any security strategy will also need to take into account a number of
mechanical factors common to the industry.

Size and Diversity of Code Bases in Vehicles The sheer size of the code
base in an average vehicle can be as much as 100 million lines of code. For
the sake of comparison, one author equates the number to “twice as much as
Windows 10, and 250 times more than the original space shuttle.” The fact
that much of that code is being written by outside suppliers complicates the
development and implementation of supply chain strategies even further, as it
means trusting others to ensure the quality and security of the code. For a supply
chain solution to work in this context, it must be resilient enough to withstand
the actions of developers at other firms who may have malicious intentions. It
would also need to be conscious of dependency issues that become harder to
negotiate when code from multiple sources is used.

Not All ECUs are Created Equal There is wide variation across these
components in terms of resources. A telematics or infotainment unit will likely
have an operating system that supports connectivity, convenience functions, and
downloadable software applications to integrate new functions in the system. A
smaller, single-task ECU, such as a door lock actuator, will be slow, will lack
the memory to do multiple cryptographic verifications and will store more than
a few KBs of state (which may be needed for Uptane’s full verification), and will
have no external network connection.

The Uptane specification was initially designed to accommodate many of the
idiosyncrasies of delivering updates to vehicles. As such, it serves as a solid
base on which to build a supply chain framework for the auto industry. But,
a few other elements need to be added. For starters, there must be greater
transparency, starting as early as when the initial code is written. Transparency,
in this setting means making the entire history of a software product accessible,
including who worked on the product and whether they had permission to do so.
The ability to track “component metadata, enabling mapping to other sources
of information, and tying the metadata to software as it moves down the supply
chain and is deployed,” is a key element in the Biden Administration’s plan for
addressing software vulnerabilities.

In addition to accounting for the challenges elaborated above, any supply chain
framework for this sector must be flexible enough to work on a variety of different
configurations, including on older legacy systems where little may be known
about each individual component.

5

https://argus-sec.com/attention-vehicle-manufacturers-the-vulnerability-management-countdown-has-begun/


Threat Model for Defending Automotive ECUs Against

Software Supply Chain Risks

Uptane was created to defend against a host of potential threats that can occur
when a car receives software updates. Yet, most supply chain attack issues occur
earlier in the lifecycle of a piece of software. Hence, we needed to devise a threat
model that could get that software product to its secure installation via Uptane
without any tampering. in-toto was designed to retain the maximum amount
of security that is practical by minimizing the impact of any potential threats
along the supply chain. Using the threat model proposed by Torres-Arias et
al. (2019) as a starting point, we present the following series of attacker scenarios
that Scudo would need to defend against.

Most of these scenarios stem from the aforementioned decentralized nature of
automotive manufacturing, and the complexity of a car’s code base. With so
many lines of codes being delivered by so many independent manufacturers, this
arena is ripe for both malicious tampering and for the accidental creation of
potentially exploitable vulnerabilities.

• Add a new action in-between two elements of the software supply chain
that changes the input of a step. The most obvious scenario here would be
a malicious actor in the packaging step inserting malware via a backdoor.
The fact that suppliers often create components for multiple OEMs means
this would be a relatively easy way to target thousands of vehicles with
very little effort.

• Replacing a step, such as software compilation, perhaps by compromising
or coercing the party that usually performs that step.

• Delivering a product for which not all steps have been performed. For
example a vulnerability scanner or source code audit may be skipped to
hide the presence of a compromise. Given the complex nature of the way
software is prepared, it is difficult to ensure all the boxes have been ticked
off at the design or packaging stages for a particular unit. If an action has
been missed, it would be hard to detect and correct.

• Including outdated or vulnerable elements in the software supply chain.
An attacker could force the final product to use a known-vulnerable version
of a third party dependency rather than the fixed version.

As Scudo is an extension of Uptane, the attack scenarios pertaining to Uptane
alone are also defended against.

Out of scope:

• Drop-request attack, in which network traffic outside or inside the
vehicle is blocked to prevent an ECU from receiving any updates. Though
Scudo does not directly address this, users will be notified if this attack is
detected.

• Denial of Service attack, which prevent a vehicle from installing updates
by blocking the vehicle connection to the internet or one or more update

6

https://uptane.github.io/attacks.html
https://uptane.github.io/attacks.html


servers. Scudo will detect this attack and report it to users.
• Physical access to the vehicle, which could allow an attacker to tamper

with or replace the hardware on which software is running.
• Compromise of a threshold of Uptane and in-toto root keys, though

Scudo’s design reduces the likelihood of such a compromise through the
use of thresholds and offline keys.

Current Options for Software Supply Chain Security

A number of technologies implemented for other supply chain applications over
the past few years could be considered for the automotive sector. We highlight
a few of these strategies in this section. Each technology listed here provides
an able solution to the part of the large software supply chain security problem
considered in its scope, and several are complementary to each other. The
open source nature of their development has also meant that there are existing
integrations that permit them to work together.

A commonality for most of these options is that they build security through
improved transparency and auditability. As such, they feature techniques for
gathering, sharing, and storing relevant information.

Software Bills of Materials A Software Bill of Materials (SBOM) is a list of
all the components that went into the writing, compiling, testing, packaging and
distribution of a piece of software. Wikipedia likens it to “a list of ingredients
on food packaging: where you might consult a label to avoid foods that may
cause an allergy, SBOMs can help organizations or persons avoid consumption
of software that could harm them.” SBOMs place all the relevant data about a
software build into an accessible piece of software, making it much easier to track
and fix vulnerable components. As such, they are mentioned prominently in
many of the U.S. government responses to the Biden Executive Orders, including
on the website for the Cybersecurity and Infrastructure Security Agency, which
labels SBOMs as “a key building block in software security and software supply
chain risk management.”

One example of an SBOM format is the open source Software Package Data
Exchange (SPDX) specification, which was recently published as ISO/IEC
5962:2021. SPDX provides a baseline format for sharing components, licenses,
copyrights and security standards. Because it offers a common standard, it
can be used by distinct stakeholders. Another SBOM example is CycloneDX,
an open source standard from the Open Web Application Security Project®
(OWASP) designed for use in application security contexts and supply chain
component analysis. Most recently, CycloneDX added the ability to communicate
vulnerabilities and their exploitability for software defined in a bill of materials.
Known as the Vulnerability Exploitability Exchange (VEX), the company notes
that, in tandem with SBOMs, VEX “forms a comprehensive view of possible
risk.”

7

https://en.wikipedia.org/wiki/Software_bill_of_materials
https://www.cisa.gov/SBOM
https://spdx.dev/
https://spdx.dev/
https://cyclonedx.org/


Though designed for a somewhat different purpose, Software Identification tags,
or SWIDs, can also function as SBOMs. SWID tags are XML files that can
contain such data as the files and cryptographic hashes for the constituent
artifact, and provenance information about both the creator of the tag and the
software components. Each SWID tag is unique to only one specific software
product, including various versions and releases. (That is, Version 1.2 of a release
would have a different SWID than Version 1.3) Collectively, SWIDs can provide
a detailed inventory of all components within a system, making them useful for
license management, endpoint policy compliance, and inventory management.
While there is some interest in utilizing SWIDs in automotive applications, we
will not discuss them at length in this paper as they are not specifically designed
to avert attacks on the supply chain.

Software Bills of Materials are a key solution to one specific software supply chain
security problem, that of a lack of transparency and traceability of components
in a specific software product. They enable the developers of a piece of software
to react quickly when a new vulnerability is discovered, à la the log4j incident
by applying patches to all parts of their system using the vulnerable version.
In this case, without a clear picture of which of their software components use
a vulnerable version of the library, developers cannot guarantee that they can
update all of them to use a safe version.

Sigstore Sigstore is a collection of open source projects for software supply
chain security. These projects include Rekor, a transparency log for packages,
Fulcio, a system for simplifying identity management with short-lived keys,
and Cosign, a tool for adding signatures to container images. Together, these
technologies allow a user to sign an artifact with a short-lived key and upload
this signature to a transparency log. This enables verifiers to ensure consistency
of signatures, and confirms that the signatures were made while the short-lived
key was valid. This frees the user from needing to store and secure the signing
key and minimizes the possibility of key compromise. If the key is lost or stolen
after it expires, the attacker can’t do anything.

However, Sigstore does not deal with insecurities early in the supply chain, such
as the source code or build system. Further, Sigstore relies on the verifier’s
ability to access a third-party transparency log, which might be complicated
when the clients are automobiles. But, the tools provided by Sigstore address a
key issue: ease of use. They make identity management, signing, and storing of
signatures more accessible, and these features can be plugged into many other
major software supply chain security technologies. Indeed, integrations with
Sigstore are plentiful, and the project has been adopted by several entities, such
as Amazon, Google, Red Hat, IBM, and VMware. Many open source ecosystems,
such as Maven Central, and Linux distributions like Arch Linux are also in the
process of adopting Sigstore as well.

Grafeas / Kritis Grafeas is a secure API created by Google that gives build,

8

https://csrc.nist.gov/projects/Software-Identification-SWID
https://news.yahoo.com/log4j-why-this-massive-security-flaw-impacting-nearly-all-the-internet-222332341.html?guccounter=1
https://github.com/sigstore/friends
https://central.sonatype.org/news/20220310_sigstore/
https://grafeas.io/


auditing, and compliance tools a way to store, query or retrieve metadata from
any step in the lifecycle of a software product. It provides two types of metadata
information. Notes present brief descriptions of particular types of metadata,
while occurrences describe how and when any particular note can be found
on the resource the metadata represents. Grafeas defines and supports several
metadata formats that can be used to collect information about the software
supply chain.

By storing data using a uniform schema, Grafeas makes it easy to aggregate
metadata by type. It also allows users to carefully control degrees of access
for multiple metadata producers and consumers. Metadata files conforming to
these formats and stored in a Grafeas server can then be consumed by Kritis, an
admission controller and policy enforcement engine. Both Grafeas and Kritis
have been deployed within Google Cloud.

in-toto Like other software supply chain initiatives, the in-toto framework is
also dedicated to transparency. It divides the software supply chain into a series
of steps, and for each designates a “functionary,” human or otherwise, authorized
to perform the required actions. These actions are recorded within a “layout”
that defines for each individual step what actions are to be taken and by who.
This data is captured in “link” metadata, as are all the artifacts involved. The
designated functionary for each step also affixes a cryptographic signature on
the link metadata. When the end-user receives the finished product, he or she
has a complete record of the product’s journey, and can verify if the software
was created according to the designer’s original plans. If there is any divergence
from the original layout, a user can pinpoint where the divergence occurred and
who is responsible for it.

It is the ability to cryptographically track artifacts through the full supply
chain that sets in-toto apart from an SBOM or a project like Grafeas. If one
stage of the supply chain is compromised, an SBOM alone is insufficient to
detect and track this compromise, and to identify the specific affected artifacts.
Likewise, though Grafeas does compile metadata that can be queried for relevant
information at different points of software design and development, it cannot
track malicious activity that might occur within and between steps without
relying on the in-toto semantics integrated into it.

Further, in-toto focuses on providing software supply chain owners with the
primitives they need to define and enforce sane policies, ones that make sense
for them. These policies can be highly granular, and supply chain owners can
define which parts are especially critical, therefore requiring more oversight than
others. Well defined policies with sane configurations can go a long way towards
blocking the efforts of malicious insiders.

Other supply chain security efforts like Sigstore are complementary to in-
toto–they do not directly protect the surfaces in-toto does, but they can be
used in conjunction with in-toto as a signing tool (Cosign), and for identity

9

https://github.com/grafeas/kritis/blob/master/README.md
https://in-toto.io/


management (Fulcio and Rekor). In fact, Rekor also supports storing in-toto
metadata, and this has been extensively used in the primary public instance.
An analysis after the first million entries found that in-toto attestations were
the second most popular type of metadata.

Another important feature of in-toto’s design is that it recognizes that not
all code used in a software product will be developed by one organization. It
includes semantics that allow developers to define third party vendors. The code
from an external vendor will have its own software supply chain to take into
account. This multi-level perspective of the software supply chain is vital to the
automotive industry, given how much of the software in a vehicle is written by
outside vendors.

Thus, pairing in-toto with Uptane appears to be an optimal starting point for a
secure software supply chain framework for automobiles. Yet, it’s important to
note that, like Uptane, in-toto can work as a complementary element in other
systems. Therefore, it may be possible to produce a multi-layered framework in
which more than one solution is employed. For example, an interface already
exists that converts standard in-toto link files into Grafeas occurrences, and allows
Grafeas to support in-toto attestations as a type of note and occurrence. Layering
in-toto and other complementary supply chain security initiatives, on top of the
Uptane framework helps to create “Defense-in-Depth.” As defined by US NIST
IR8183 Defense-in-Depth as “the application of multiple countermeasures in a
layered or stepwise manner” to “ensure that attacks missed by one technology
are caught by another.” One author compared the strategy to “sea walls” to
resist “the waves that may eventually crash over the wall.” Combining in-toto
and Uptane in Scudo fits well into the overall strategy for a secure software
development framework proposed by the National Institute of Standards and
Technology.

In the next section, we present a high-level proposal for Scudo that offers an
effective end-to-end defense for automotive ECUs from design to installation.
While Uptane is designed to protect the secure delivery of software updates,
the addition of in-toto attestations via Scudo will ensure the update images in
question are tamper-free prior to their installation.

Scudo: A Proposal for Infusing Software Supply Chain

Security into Automobiles

Our proposal for Scudo uses in-toto to achieve supply chain security, and therefore,
we urge readers to familiarize themselves with its specification. As an added
plus point, Uptane can be used to bootstrap trust for in-toto’s definition of the
supply chain. For Scudo, in-toto ensures that every step in the supply chain
is performed by the expected entity, while Uptane ensures that the image and
in-toto metadata are properly communicated to the vehicle.

As an example of how Scudo could work, we present a case study in which TUF
and in-toto have previously been used in production systems to create end-to-

10

https://blog.sigstore.dev/celebrating-1-000-000-entries-in-rekor-1950b7c150df
https://blog.sigstore.dev/celebrating-1-000-000-entries-in-rekor-1950b7c150df
https://github.com/in-toto/totoify-grafeas
https://github.com/grafeas/grafeas/blob/master/docs/grafeas_concepts.md#occurrences
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://anchore.com/blog/devsecops-and-defense-in-software-supply-chain-security-coopetion-or-competition/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218-draft.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218-draft.pdf
https://github.com/in-toto/docs/blob/master/in-toto-spec.md


end, verifiably secure build pipelines. in-toto is used to create cryptographic
attestations capturing the software development processes. TUF is used to
distribute the software artifacts, as well as to securely distribute the in-toto
layouts (policies) and public keys required for verification. This is described
in detail in an in-toto Enhancement (ITE), which is a mechanism to describe
modifications or extensions to the in-toto specification.

The TUF / in-toto ITE, originally drafted as ITE-2, is not written with any
specific supply chain in mind, and as such does not mandate any specific structure
for the in-toto metadata. It requires a delegated targets role that is used to sign
targets metadata for the latest artifacts. Each artifact listed in this delegated role
is associated with the in-toto metadata corresponding to the supply chain used
to create the artifact. This association is established using the opaque “custom”
field allowed by the TUF specification. Meanwhile, the top level targets role signs
for the in-toto layouts as well as the public keys used to verify them. The ITE
makes some recommendations about key management and the corresponding
security properties of each role.

While ITE-2 was authored with TUF in mind, it is straightforward to adapt it to
Uptane. One major change from TUF is that Uptane requires a minimum of two
repositories–an Image repository and a Director repository. The Image repository
contains all the images and metadata created by various suppliers. The Director
repository is responsible for communicating with the actual automobile ECUs,
deciding which images need to be delivered to the vehicle, and signing metadata
for these images.

If we were to set aside the compulsory existence of a second repository, the
rest of this structure closely resembles the “traditional” or expected setup of a
system employing TUF. Therefore, Scudo users can choose to implement ITE-2
on either repository, depending on which one is used to download images to the
vehicles they build. The resulting in-toto metadata would be stored alongside
the images. We recommend implementers apply ITE-2 to the Image repository
because, by definition, the Director repository signs targets metadata using
online keys, while the top level targets role of the Image repository is typically
signed using offline keys. Online keys are not considered secure enough for the
role signing for the in-toto root layout and the public keys. Therefore, in the
rest of this document, we will assume, but not prescribe, that vehicles fetch their
images from the Image repository, where in-toto metadata will also be stored
and signed for.

In this Scudo model, the upload process would be as follows: When a functionary
provides an image and the associated in-toto metadata, a delegated role from
the top level targets role signs the image and maps the in-toto metadata to the
corresponding in-toto layout.

Once the Director repository decides which images are required and signs targets
metadata for them, the vehicle’s Primary ECU can fetch the images and all
the metadata using the interfaces provided by both the repositories. In this

11

https://github.com/in-toto/ITE/blob/master/ITE/2/README.adoc


Figure 1: The standard Uptane structure includes two TUF repositories working
in tandem to securely distribute images to vehicle ECUs.

Figure 2: Scudo modifies the standard Uptane structure by introducing in-toto
metadata into one of the repositories. In this example, we have assumed in-toto
metadata is stored alongside the images in the Image repository.

12



phase, the Director repository can continue signing targets metadata for these
images, as per the usual functioning of Uptane with no delegations, and serve
the metadata to the automobile. The automobile fetches the image itself from
the Image repository along with the repository’s corresponding metadata.

After all the images and metadata from both repositories have been delivered to
the automobile’s Primary ECU, it can perform a modified version of Uptane’s
verification workflow. Consider section 5.4.4.2 of the Uptane Standard. At step
10, after verifying that the Targets metadata of Director and Image repositories
match for an image, the in-toto metadata for the image, the root layout, and
corresponding public keys are fetched. These must, of course, also match what’s
signed in the Uptane/TUF metadata at the Image repository. Then, Primary
and full verification ECUs may execute the in-toto verification workflow to verify
the supply chain of the image.

Performing full in-toto verification can be a resource intensive process for some
vehicle ECUs, such as those designated as partial verification ECUs in Uptane.
In these situations, other ECUs capable of performing in-toto verification are
expected to step in for the the ECUs that cannot verify for themselves. This
responsibility could fall to the Primary ECU or a collection of full verification
Secondaries that share the extra load on behalf of partial verification Secondary
ECUs.

As a stopgap measure for vehicles with no ECUs capable of performing in-toto
verification, the Image repository may perform in-toto verification to generate
a new “summary link” metadata file. The link can be used as proof that
the Image repository performed the complete verification workflow, and the
repository can then send this summary link metadata to the vehicle. Using this
lightweight verification workflow requires more trust in the Image repository, as
it is performing the verification rather than the client, which in this case would
be the Primary ECU. Further, in these situations, the Image repository could
become a single point of failure for thousands of vehicles. So, while this approach
can significantly reduce the metadata and verification overhead, it must only be
used when full verification is categorically impossible on the vehicle.

Scudo can clearly combine the state of the art in software update security and
software supply chain security systems. However, as with any framework that
relies on user-defined policies, Scudo also requires that its policies be designed
with secure defaults, allowing each part of the software supply chain only as
much privilege as is absolutely necessary.

Meeting Emerging Regulations and Industry Best Practices

Any proposed solution for software supply chain security must not only fit the
demands of the “here and now,” but also look forward to the types of vehicles
that will be produced in both the near and distant future. In addition, the auto
industry is a global industry, both in terms of sales and of supply chain sourcing,
and so any proposed strategies to protect that chain would also need to meet

13

https://uptane.github.io/papers/uptane-standard.2.0.0.html


regulations and standards governing markets in Europe, Asia, and elsewhere in
the world.

In terms of worldwide influence, no current or proposed regulation looms larger
than UNECE R155 Road Vehicles: Cybersecurity Engineering, and the com-
panion regulation UNECE R156 Road Vehicles: Software Update. The United
Nations Economic Commission for Europe (UNECE) World Forum for Harmo-
nization of Vehicle Regulations on Cybersecurity and Cyber Security Management
Systems is a working group that proposes regulations. R155 and R156 are now
mandatory regulations in force in the 54 countries that participate in the 1958
UNECE Transportation Agreements and Conventions, which includes the nations
of the EU, the UK, Japan and South Korea. In addition to UNECE R155, a
number of pending international standards and regional regulations impacting
the auto industry may also dictate future security strategies.

Though international and national standards do not require compliance in the
same manner as adopted regulations, within their related industries approved
standards strongly encourage conformance to a specific set of required processes,
actions and policies. In the automotive industry, the joint standard developed by
SAE International and the International Standards Organization Road Vehicles:
Cybersecurity Engineering (ISO/SAE 21434, August 2021), defines cybersecurity
process requirements for automotive manufacturers and suppliers to demonstrate
adequate cyber-risk management practices throughout vehicle development,
production, and post-production, and decommisioning vehicle lifecycle phases. It
also encourages the ability to implement over-the-air (OTA) software security fixes
(i.e., when vehicles are already on the road). The companion standard currently
under development by the International Standards Organization Road Vehicles:
Software Update (ISO DIS 24089, January 2022) defines process requirements
for automotive manufacturers and suppliers to demonstrate adequate functional
safety and cybersecurity management practices for all software update methods,
including OTA (over-the-air). The final ISO 24089 standard is scheduled to be
published in December 2022.

In this section, we’ll examine what components a software supply chain system
must have to be in compliance with the US Executive Orders, the stipulations
of UN R155 and R156, and the best practices of ISO/SAE 21434 and ISO DIS
24089. We’ll then suggest how Scudo might complement a compliance strategy
for each of these components. In addition we will look at how our proposed
protocol can embody the best practices of both the automotive industry and
the computing industry by referencing the aforementioned ISO/SAE 21434 and
ISO DIS 24089 standards and the open source Supply chain Levels for Software
Artifacts, or SLSA, checklist of standards and controls.

It should be noted that both standards and regulations always take years to write
and thus some of these documents were prepared before the current heightened
concern about supply chain security. It is still important to understand and
consider their impact as standards and regulations are living documents and
therefore are periodically revised in response to emerging concerns.

14

https://unece.org/sites/default/files/2021-03/R155e.pdf
https://unece.org/sites/default/files/2021-03/R156e.pdf
https://www.iso.org/standard/70918.html
https://www.iso.org/standard/77796.html


U.S. Executive Order 14028 The U.S. Executive Order 14028, signed by
the U.S. President on on May 12, 2022, mandates the development of a set
of recommended high-level practices based on established standards, guidance,
and secure software development practice documents. To identify and promote
these practices, several Federal agencies, including the U.S. National Institute of
Standards and Technology (NIST), the U.S. National Telecommunications and
Information Administration (NTIA), and the U.S. Department of Commerce,
were instructed to develop specific parts of an overall strategy.

U.S. NTIA was charged with publishing the “minimum elements” required for
an SBOM. The administration is placing a great emphasis on the use of SBOM’s
because it pegs transparency as a core element in improving the security of
the software supply chain. An NTIA/Department of Commerce report quotes
Executive Order 14028 as saying, “the trust we place in our digital infrastructure
should be proportional to how trustworthy and transparent that infrastructure
is.” The document adds that, “transparency is best achieved using an understand-
able model supported by industry. An SBOM model achieves this systematic
sharing by tracking component metadata, enabling mapping to other sources of
information, and tying the metadata to software as it moves down the supply
chain.”

The NTIA report referenced above, which was published on July 12, 2021,
defines an SBOM as a “formal record containing the details and supply chain
relationships of various components used in building software,” and the criteria
for its minimum elements are listed in Figure 4. NTIA also published several
related documents throughout 2021, including an SBOM Tool Classification
Taxonomy, which categorizes different types of SBOM tools. This document can
help tool creators and vendors to easily classify their work and help tool users
to select available SBOM tools.

Figure 3: The Minimum Elements for an SBOM as defined in The Minimum
Elements For a Software Bill of Materials (SBOM) published by the U.S. De-
partment of Commerce, June 12, 2021.

In the fall of 2021, NTIA published a Survey of Existing SBOM Formats and

15

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_tooling_taxonomy-2021mar30.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_tooling_taxonomy-2021mar30.pdf
https://www.ntia.gov/files/ntia/publications/SBOM_formats_survey-version-2021.pdf
https://www.ntia.gov/files/ntia/publications/SBOM_formats_survey-version-2021.pdf


Standards - Version 2021 , which summarizes existing standards, formats, and
initiatives for SBOMs to identify the external components and shared libraries
used in the construction of software products. It highlights the three key formats
of SPDX, CycloneDX, and SWID. The stakeholder group analyzed efforts already
underway to communicate this information in a machine-readable manner.

NIST has also focused on a more extensive vision of the whole software develop-
ment life cycle. In October 2021, US NIST published a major draft update to
their fundamental document SP800-161r1 as Cybersecurity Supply Chain Risk
Management Practices for Systems and Organizations (2nd Draft). It defines
best practices and controls for Cybersecurity Supply Chain Risk Management
(C-SCRM) that apply to both information technology (IT) and operational tech-
nology (OT) environments, and also includes the Internet of Things (IoT).In a
document entitled Secure Software Development Framework (SSDF) Version 1.1,
released in February 2022, NIST presents “a core set of high-level secure software
development practices that can be integrated into each software development
implementation.” The framework encourages “a linkable, modular approach” to
“maximize the potential for flexibility and adoption.” A core vision of NIST’s
approach to supply chain security emphasizes modularity of operations, which
makes it easier to adapt to a wide number of different use cases.

Thus, two of the key elements called for meeting the demands of Executive
Order 14028 are transparency and adaptability. Because the Executive Order is
focused on “outcomes of the practices rather than on the tools, techniques, and
mechanisms to do so,” it offers supply chain developers a great deal of flexibility
to design for specific applications. In short, the Federal government is calling
for the development of frameworks that “can be used for any type of software
development, regardless of technology, platform, programming language, or
operating environment.” Despite all the positives of such an approach, whatever
recommendations are put forward must still ensure that key security elements
are standardized and consistent.

There is, at this point, no widely used and standardized approach for software
supply chain security in the automotive sector. Yet, any proposed solution stands
to benefit from the use of approaches that have been vetted under the rigorous
review of the open source world, and built by communities that understand
the particular difficulties of the market for which it was constructed. Both
in-toto and Uptane, Scudo’s building blocks, can lay claim to such a background.
Furthermore, as stated earlier. our proposed approach allows for layered defense-
in-depth and supports the “modularity of operations” recommended by NIST.
As such, our proposed module can also support the integration of other security
technologies.

UNECE WP29 R155 Within the context of this regulation, supply chain
issues can be considered under the larger umbrella of cybersecurity management,
which ensures security is “adequately considered, including risks and mitigations.”
Compliance with this regulation requires adherence to a series of procedures that

16

https://www.ntia.gov/files/ntia/publications/SBOM_formats_survey-version-2021.pdf
https://www.ntia.gov/files/ntia/publications/SBOM_formats_survey-version-2021.pdf
https://csrc.nist.gov/projects/Software-Identification-SWID
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161r1-draft2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://unece.org/sites/default/files/2021-03/R155e.pdf


demonstrate adequate testing, assessment, and mitigation of any identified flaws.

According to a release issued by the UN on June 24, 2020, when the new
regulation was formally adopted, it represents “the first ever internationally
harmonized and binding norms in this area.” The release identifies four areas
of primary concern, including “providing safe and secure software updates and
ensuring vehicle safety is not compromised, introducing a legal basis for so-called
‘Over-the-Air’ (OTA) updates to on-board vehicle software.”

While this regulation does not specify practices for supply chain security, an
annex to a recent addendum (Addendum 154-UN Regulation No. 155) did
list several “attack impacts” that could be consequences of a supply chain
vulnerability, including “altered software” and “data integrity breaches.” It also
includes “threats to vehicles regarding their update procedures” on its list of
high-level descriptions of threats and vulnerabilities.

An assessment of UNECE 29 by Upstream, a cybersecurity and data analytics
platform serving the auto industry, emphasizes that under this regulation OEMs
are responsible for “ensuring that all vehicle components and parts, both hardware
and software, are secure.” With such responsibility on the line, a proven track
record in securing a wide range of systems, including container and cloud
applications makes in-toto an appealing option. Furthermore, with its mandate
to “provide safe and secure software updates,” a system based on TUF, which
has been documented as a reliable and compromise-resilient defender of software
updates, can only be a plus.

UNECE WP29 R156 Within the context of this regulation, supply chain
security issues are paramount concerns to ensure that all automotive vehicle
functional safety and cybersecurity risks have been identified, analyzed, and elim-
inated and/or mitigated in both hardware and software automotive components.
Compliance with this regulation requires the establishment, maintenance, and
performance of quality, configuration, and documentation management, verifica-
tion and validation, and software update management processes to ensure the
integrity and reliability of the hardware and software components in automotive
vehicles.

ISO/SAE 21434 A joint initiative from two established standards develop-
ment organizations serving the automotive sector, this standard has been in
development for the past four years. As noted in Upstream Security’s 2021
Global Automotive Cybersecurity Report, it represents input from OEMs, ECU
suppliers, cybersecurity vendors, government regulatory organizations, and more
than 100 experts from more than 82 companies based in over 16 countries.
The draft was developed in four working groups focusing on risk management,
product development, production, operation, maintenance, decommissioning,
and process overview.

Like UNECE 29, this standard does not mandate specific security practices to

17

https://unece.org/media/press/1632
https://unece.org/sites/default/files/2021-03/R155e.pdf
https://upstream.auto/blog/understanding-the-unece-wp-29-cybersecurity-regulation/
https://unece.org/sites/default/files/2021-03/R156e.pdf
https://upstream.auto/2021report/
https://upstream.auto/2021report/


defend the supply chain. As a writeup in the German edition of Wikipedia
states, “the activities in product development according to the standard are
contributed on the basis of a risk assessment, and measures for organizational
anchoring are required. Processes are required, but the standard only describes
the task of a process, but leaves the design of the process to the companies.”
Yet, the standard’s strong emphasis on both risk assessment strategies and
threat modeling implies that understanding all potential threats at each step
of a product’s development will become essential to compliance. The holistic
approach to security made possible by Scudo should contribute greatly to such
efforts.

ISO DIS 24089 A major international automotive industry effort, this stan-
dard has been in development since July 2019. It represents input from OEMs,
hardware and software suppliers, cybersecurity vendors, government regulatory
organizations, and more than 90 voting experts from over 20 ISO member coun-
tries. When the final ISO 24089 is published, conformance with this standard
will require the establishment, maintenance, and performance of quality manage-
ment, configuration management, documentation management, verification and
validation, and software update management processes to ensure the integrity
and reliability of all software updates to automotive vehicles.

SLSA Supply chain Levels for Software Artifacts (SLSA) is a series of controls
and recommendations that aim to secure the integrity of every link in a given
software supply chain. SLSA is designed to be ecosystem agnostic, and instead
serves as a common reference to understand the amount of assurances we can
make about the supply chain security of a particular piece of software.

SLSA defines four levels, 1 to 4, where level 1 is the easiest to adopt, while level
4 is the hardest but provides the strongest assurances. Unlike other standards or
lists of best practices common in the industry, SLSA is designed around the idea
of using verifiable proof of a particular recommendation or control being in place
in a supply chain. These verifiable proofs are in the form of in-toto attestations.
The SLSA provenance specification is already in use, while other attestation
formats are being actively developed. Scudo’s use of in-toto metadata puts users
on the track to future SLSA compliance.

Conclusions and Future Work

Software supply chain attacks have been on the rise across industries and
ecosystems. If it has not happened yet, the automotive industry could be
a promising target for nation-state and other attackers because of the sheer
numbers of potential victims, and the level of devastation such an attack can
cause. For years, software updates in this space have been secured using Uptane.
We propose building on the foundation Uptane provides by adding in-toto, an
open source framework for securing software supply chains that has been battle
tested in non-automotive sectors. We call this combined system Scudo. Scudo

18

https://de.wikipedia.org/wiki/ISO/SAE_21434
https://www.iso.org/standard/77796.html
https://www.iso.org/standard/77796.html
https://slsa.dev/


is complementary with on-going standards and regulations that aim to secure
vehicles from supply chain attacks. It uses existing infrastructure from Uptane
to simplify adoption for OEMs.

This document presents a high level architecture for Scudo. A more formal
specification will be published as a Proposed Uptane Revisions and Enhancements
(PURE). The specification released as a PURE, which is a formal mechanism
for proposing changes to the Uptane Standard, will also consider the unique
needs of the automotive industry, and present example scenarios using existing,
mature in-toto implementations to help OEMs bootstrap the framework for
their supply chains. Lastly, the specification will acknowledge that automobile
ECUs have limited bandwidth and resources, and this needs to be tested and
benchmarked. In the PURE, we will present detailed case studies where we look
at the bandwidth constraints and different verification models.

References

• Anchore.com. “DevSecOps and Defense in Depth for Software Supply
Chain Security.” https://anchore.com/blog/devsecops-and-defense-in-
software-supply-chain-security-coopetion-or-competition/. 28 January
2021. Accessed 19 May 2022.

• Argus Cybersecurity. “Attention Vehicle Manufacturers: The Vulnerability
Management Countdown Has Begun.” https://argus-sec.com/attention-
vehicle-manufacturers-the-vulnerability-management-countdown-has-
begun/. Accessed 19 May 2022.

• Charette, Robert N. “How Software is Eating the Car,” IEEE Spectrum.
https://spectrum.ieee.org/software-eating-car. 7 June 2021. Accessed 19
May 2022.

• Cloud Native Computing Foundation. The Linux Foundation.
https://www.cncf.io/. Accessed 19 May 2022.

• Computer Security Resource Center. “Software Identification
(SWID) Tagging.” National Institute of Standards and Technology.
https://csrc.nist.gov/projects/Software-Identification-SWID. 13 January
2022. Accessed 19 May 2022.

• Cybersecurity and Infrastructure Security Agency. “Software Bill of Mate-
rials.” https://www.cisa.gov/sbom. Accessed 19 May 2022.

• CycloneDX. “OWASP CycloneDX Launches SBOM Exchange API,
Standardizing SBOM Distribution,” The OWASP Foundation.
https://cyclonedx.org/news/owasp-cyclonedx-launches-sbom-exchange-
api-standardizing-sbom-distribution/. 12 May 2022. Accessed 19 May
2022.

• Datadog. https://www.datadoghq.com/. Accessed 19 May 2022.
• Edmiston, Taylor D. “What is software security?,” Medium.com.

https://medium.com/the-framework-by-tangram-flex/what-is-software-
security-e03a5ee7a6b5. 28 August 2019. Accessed 19 May 2022.

• Goldstein, Fay. “Understanding the UNECE WP.29 Cybersecurity Regula-

19

https://github.com/uptane/pures/blob/main/pure1.md
https://github.com/uptane/pures/blob/main/pure1.md


tion (CSMS),” Upstream. https://upstream.auto/blog/understanding-the-
unece-wp-29-cybersecurity-regulation/. Accessed 19 May 2022.

• Grafeas. https://grafeas.io/. Accessed 19 May 2022.
• “Grafeas Concepts.” Grafeas. https://github.com/grafeas/grafeas/blob/master/docs/grafeas_concepts.md#o

18 March 2020. Accessed 19 May 2022.
• Hammerschmidt, Christoph. “Number of automotive ECUs continues to

rise,” EE News Automotive. https://www.eenewsautomotive.com/en/number-
of-automotive-ecus-continues-to-rise/. Accessed 4 July 2022.

• Howley, Daniel. “Log4j: Why this massive security flaw is impacting
nearly all of the internet,” Yahoo Finance. https://news.yahoo.com/log4j-
why-this-massive-security-flaw-impacting-nearly-all-the-internet-
222332341.html. 17 December 2021. Accessed 19 May 2022.

• in-toto website. https://in-toto.io. Accessed 19 May 2022.
• “in-toto Specification.” https://github.com/in-toto/docs/blob/master/in-

toto-spec.md. 1 October 2021. Accessed 19 May 2022.
• in-toto/totoify-grafeas. https://github.com/in-toto/totoify-grafeas. Ac-

cessed 19 May 2022.
• ISO/DIS 24089 Road Vehicles: Software Update Engineering. Interna-

tional Standards Organization. https://www.iso.org/standard/77796.html.
Accessed 19 May 2022.

• ISO/SAE 21434 Road Vehicles: Cybersecurity Engineering. International
Standards Organization and SAE International. https://www.iso.org/standard/70918.html.
August 2021. Accessed 19 May 2022.

• “ISO/SAE 21434,” Wikipedia.de. https://de.wikipedia.org/wiki/ISO/SAE_21434.
Accessed 19 May 2022.

• “ITE-2: A general overview of combining TUF and in-toto to
build compromise-resilient CI/CD,” in-toto. https://github.com/in-
toto/ITE/blob/master/ITE/2/README.adoc. Accessed 19 May
2022.

• KUBESEC.IO – V2. https://kubesec.io/. Accessed 19 May 2022.
• Kuppusamy, Trishank Karthik. “Secure Publication of Datadog Agent Inte-

grations with TUF and in-toto.” https://www.datadoghq.com/blog/engineering/secure-
publication-of-datadog-agent-integrations-with-tuf-and-in-toto/. 3 June
2019. Accessed 19 May 2022.

• Kuppusamy, Trishank Karthik, Brown, Akan, Awwad, Sebastien, Mc-
Coy, Damon, Bielawski, Russ, Mott, Cameron, Lauzon, Sam, Weimer-
skirch, André, Cappos, Justin. “Uptane: Securing Software Updates
for Automobiles,” 14th Embedded Security in Cars (escar16) conference,
https://uptane.github.io/papers/kuppusamy_escar_16.pdf. November
2016. Accessed 19 May 2022.

• Lahav, Igor. “SUNBURST: Attack Flow, C2 Protocol, and Prevention,”
Cynet.com. https://www.cynet.com/attack-techniques-hands-on/sunburst-
backdoor-c2-communication-protocol/. 24 December 2020. Accessed 19
May 2022.

• Linux Foundation. https://linuxfoundation.org/. Accessed 19 May 2022.
• National Telecommunications and Information Administration. “SBOM

20



Tool Classification Taxonomy,” NTIA SBOM Formats & Tooling Working
Group. https://www.ntia.gov/files/ntia/publications/ntia_sbom_tooling_taxonomy-
2021mar30.pdf. 30 March 30, 2021. Accessed 19 May 2022.

• Open Source Security Foundation. https://openssf.org/. Accessed 19 May
2022.

• Rebuilderd. https://rebuilderd.com/. Accessed 19 May 2022.
• Reproducible Builds. https://reproducible-builds.org/. Accessed 19 May

2022.
• Rosen, Trevor. “Project Trebuchet: Mitigating SUNBURST-style attacks

with open-source tech.” Supply Chain Security Con.Accessed 19 May 2022.
https://static.sched.com/hosted_files/supplychainsecurityconna21/df/SupplyChainCon-
TrevorRosen-Keynote.pdf. 30 October 2021.

• Sigstore: A New Standard for Signing, Verifying and Protecting Software.
https://www.sigstore.dev/. Accessed 19 May 2022.

• “sigstore/friends.” https://github.com/sigstore/friends. Accessed 19 May
2022.

• The Software Package Data Exchange Specification. The Linux Foudation.
https://spdx.dev/. Accessed 19 May 2022.

• “Software Supply Chain,” Wikipedia. https://en.wikipedia.org/wiki/Software_supply_chain.
3 May 2022. Accessed 19 May 2022.

• Sonatype. 2021 State of the Software Supply Chain: The 7th
Annual Report on Global Open Source Software Development.
https://www.sonatype.com/hubfs/SSSC-Report-2021_0913_PM_2.pdf.
Accessed 19 May 2022.

• Souppaya, Murugiah, Scarfone, Karen, Dodson, Donna. “Secure Software
Development Framework (SSDF) Version 1.1: Recommendations for
Mitigating the Risk of Software Vulnerabilities,” National Institute for Stan-
dards and Technology. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
218.pdf. February 2022. Accessed 19 May 2022.

• Stouffer, Keith, Zimmerman, Timothy, Tang, CheeYee, Lubell, Joshua,
Cichonski, Jeffrey, McCarthy, John. “Cybersecurity Framework Man-
ufacturing Profile,” National Institute of Standards and Technology.
https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8183.pdf. September
2017. Accessed 19 May 2022.

• Sugiyama, Satoshi, Shiraki, Maki and Kelly, Tim. “Toyota to
Restart Japan Production after Cyberattack on Supplier.” Reuters.
https://www.reuters.com/markets/stocks/toyota-shares-fall-after-
domestic-factory-suspension-2022-03-01/. 1 March 2022. Accessed 19 May
2022.

• Supply chain Levels for Software Artifacts. “Safeguarding artifact integrity
across any software supply chain.” SLSA. https://slsa.dev/. Accessed 19
May 2022.

• Swank, Jason. “Maven Central and Sigstore,” The Central Repository Doc-
umentation. Sonatype.org. https://central.sonatype.org/news/20220310_sigstore/.
Accessed 19 May 2022.

• Tengler, Steve. “Top 25 Auto Cybersecurity Hacks: Too Many Glass Houses

21



To Be Throwing Stones,” Forbes. https://www.forbes.com/sites/stevetengler/2020/06/30/top-
25-auto-cybersecurity-hacks-too-many-glass-houses-to-be-throwing-
stones/?sh=1fcd7fbc7f65. 30 June 2020. Accessed 19 May 2022.

• Torres-Arias, Santiago. “Celebrating 1,000,000 entries in Rekor.” Sig-
store Blog. https://blog.sigstore.dev/celebrating-1-000-000-entries-in-rekor-
1950b7c150df. 10 January 2022. Accessed 19 May 2022.

• Torres-Arias, Santiago, Afzali, Hammad, Kuppusamy, Trishank Karthik,
Curtmola, Reza, Cappos, Justin. “in-toto: Providing farm-to-table guar-
anteesfor bits and bytes,” Proceedings of the 28th USENIX Security Sym-
posium. https://ssl.engineering.nyu.edu/papers/torres-toto-usenix19.pdf.
August 2019.

• UNECE R155 Road Vehicles: Cybersecurity Engineering. Adden-
dum 154 – UN Regulation No. 155. UNECE 29 Working Group.
https://unece.org/sites/default/files/2021-03/R155e.pdf. 4 March 2021.
Accessed 19 May 2022.

• UNECE R156 Road Vehicles: Software Update. Addendum
155 – UN Regulation No. 156. UNECE 29 Working Group.
https://unece.org/sites/default/files/2021-03/R156e.pdf. 4 March
2021. Accessed 19 May 2022.

• Upstream. Upstream Security’s 2021 Global Automotive Cybersecurity
Report. https://upstream.auto/2021report/. Accessed 19 May 2022.

• Uptane PURE 1.” Uptane PURE Repository. https://github.com/uptane/pures/blob/main/pure1.md.
Accessed 19 May 2022.

• Uptane Standards Group. Uptane Standard for Design and Implementation
2.0.0. https://uptane.github.io/papers/uptane-standard.2.0.0.html. March
18, 2022. Accessed 19 May 2022.

• Uptane Website. https://uptane.github.io/. Accessed 19 May 2022.
• U.S. Department of Commerce. “The Minimum Elements For a Software

Bill of Materials (SBOM).” https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_rep
12 July 2021. Accessed 19 May 2022.

• Wakelin, Nicole. “How Many Parts are in a Car?,” Napa online.com.
https://knowhow.napaonline.com/how-many-parts-are-in-a-car/. 2 July
2021. Accessed 19 May 2022.

• The White House. Executive Order 14028 on Improving the
Nation’s Cybersecurity. https://www.whitehouse.gov/briefing-
room/presidential-actions/2021/05/12/executive-order-on-improving-the-
nations-cybersecurity/. 12 May 2021. Accessed 19 May 2022.

• “Why Uptane is needed.” Uptane.io. https://uptane.github.io/attacks.html.
Accessed 19 May 2022.

Change History

As this whitepaper is intended to be a living document, some changes are
expected from time to time. We record them here, using the dates of release of
each update as checkpoints.

22



July 13, 2022

• Expanded the division of responsibilities among ECUs for in-toto verifica-
tion when Scudo is used

• Replaced diagrams
• Clarified in-toto metadata generation and how it maps to SLSA compliance
• Clarified number of components in cars in terms of the number of ECUs

they have

May 23, 2022

• Initial version of the whitepaper

23


